Skip to main content
Log in

Genetic Resources (Including Wild and Cultivated Solanum Species) and Progress in their Utilisation in Potato Breeding

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

The genetic resources available for the improvement of the cultivated potato (Solanum tuberosum) are reviewed along with progress in their utilisation. The conclusions are as follows. The wild and cultivated species of potato have been utilised in potato breeding to good effect, but only a very small sample of the available biodiversity has been exploited. New knowledge and technology will open possibilities for much greater use of these genetic resources in breeding. The strategy for utilising the cultivars native to Latin America will either be the introgression of desirable genes or the direct use of parents from improved populations, depending on how far modern S. tuberosum cultivars have genetically diverged from them and the extent to which S. tuberosum cultivars have been improved in the process. Molecular marker-assisted selection will be used for faster introgression of desirable genes from wild species, and the possibility exists of moving genes directly from wild species to cultivated potato with transgenic methods. New cultivars will continue to come from crosses between pairs of parents with complementary features but adapted to local growing conditions. However, increasingly these parents will possess desirable genes which have been introgressed from wild species and may also be from complementary groups of cultivated germplasm to exploit hybrid vigour. Successful cultivars may be genetically modified, if consumers see benefits in the use of the technology, to introduce genes not present in cultivated potatoes and their wild relatives to achieve novel biochemistry and further desirable improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almekinders CJM, Chilver AS, Renia HM (1996) Current status of the TPS technology in the world. Potato Res 39:289–303

    Article  Google Scholar 

  • Bachem CWB, Speckmann GJ, Van Der Linde PCG, Verheggen FTM, Hunt MD, Steffens JC, Zabeau M (1994) Antisense expression of polyphenol oxidase genes inhibits enzymic browning in potato tubers. BioTechnology 12:1101–1105

    Article  CAS  Google Scholar 

  • Ballvora A, Ercolano MR, WeiB J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30:361–371

    Article  PubMed  CAS  Google Scholar 

  • Barone A, Sebastiano A, Carputo D, della Rocca F, Frusciante L (2001) Molecular marker-assisted introgression of the wild Solanum commersonii genome into the cultivated S. tuberosum gene pool. Theor Appl Genet 102:900–907

    Article  CAS  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–791

    Article  PubMed  CAS  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1993) A test of the maximum heterozygosity hypothesis using molecular markers in tetraploid potatoes. Theor Appl Genet 86:481–491

    Article  CAS  Google Scholar 

  • Bradshaw JE, Mackay GR (1994) Breeding strategies for clonally propagated potatoes. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 467–497

    Google Scholar 

  • Bradshaw JE, Ramsay G (2005) Utilisation of the Commonwealth Potato Collection in potato breeding. Euphytica 146:9–19

    Article  Google Scholar 

  • Bradshaw JE, Dale MFB, Phillips MS (1995) Breeding potatoes at SCRI for resistance to potato cyst nematodes. SCRI Annual Report 1995:30–34

    Google Scholar 

  • Braun A, Schullehner K, Wenzel G (2004/5) Molecular analysis of genetic variation in potato (Solanum tuberosum L.). II International cultivar spectrum. Potato Res 47:93–99

    Article  Google Scholar 

  • Brown CR (1993) Outcrossing rate in cultivated autotetraploid potato. Am Potato J 70:725–734

    Article  Google Scholar 

  • Buso JA, Boiteux LS, Peloquin SJ (1999) Comparison of haploid Tuberosum—Solanum chacoense versus Solanum phureja—haploid Tuberosum hybrids as staminate parents of 4x‒2x progenies evaluated under distinct crop management systems. Euphytica 109:191–199

    Article  Google Scholar 

  • Camadro EL, Carputo D, Peloquin SJ (2004) Substitutes for genome differentiation in tuber-bearing Solanum: interspecific pollen-pistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theor Appl Genet 109:1369–1376

    Article  PubMed  CAS  Google Scholar 

  • Carputo D, Barone A (2005) Ploidy level manipulations in potato through sexual hybridisation. Ann Appl Biol 146:71–79

    Article  Google Scholar 

  • Carroll CP (1982) A mass-selection method for the acclimatization and improvement of edible diploid potatoes in the United Kingdom. J Agr Sci, Cambridge 99:631–640

    Article  Google Scholar 

  • Carroll CP, De Maine MJ (1989) The agronomic value of tetraploid F1 hybrids between potatoes of group Tuberosum and group Phureja/Stenotomum. Potato Res 32:447–456

    Article  Google Scholar 

  • Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a non-allergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci U S A 97:3724–3929

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Huaman Z, Hari Krishna S, Ortiz R (2002) Optimal sampling strategy and core collection size of the Andean tetraploid potato based on isozyme data-a simulation study. Theor Appl Genet 104:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Chase SS (1963) Analytic breeding in Solanum tuberosum L.—a scheme utilizing parthenotes and other diploid stocks. Can J Genet Cytol 5:359–363

    Google Scholar 

  • Cubillos AG, Plaisted RF (1976) Heterosis for yield in hybrids between S. tuberosum spp. tuberosum and S. tuberosum spp. andigena. Am Potato J 53:143–150

    Article  Google Scholar 

  • Davidson MM, Butler RC, Wratten SD, Conner AJ (2004) Resistance of potatoes transgenic for a cry1Ac9 gene, to Phthorimaea operculella (Lepidoptera: Gelechiidae) over field seasons and between plant organs. Ann Appl Biol 145:271–277

    Article  CAS  Google Scholar 

  • Davies HV (1998) Prospects for manipulating carbohydrate metabolism in potato tuber. Aspects Appl Biol 52:245–254

    Google Scholar 

  • Dodds KS (1965) The history and relationships of cultivated potatoes. In: Hutchinson JB (ed) Essays in crop plant evolution. Cambridge University Press, Cambridge, pp 123–141

    Google Scholar 

  • Duncan DR, Hammond D, Zalewski J, Cudnohufsky J, Kaniewski W, Thornton M, Bookout JT, Lavrik P, Rogan GJ, Feldman-Riebe J (2002) Field performance of transgenic potato, with resistance to Colorado potato beetle and viruses. HortScience 37:275–276

    Google Scholar 

  • Gaur PC, Pandey SK (2000) Potato improvement in sub-tropics. In: Paul Khurana SM, Shekhawat GS, Singh BP, Pandey SK (eds) Potato, global research and development, vol 1. Indian Potato Association, Shimla, India, pp 52–63

    Google Scholar 

  • Glendinning DR (1969) The performance of progenies obtained by crossing Groups Andigena and Tuberosum of Solanum tuberosum. Eur Potato J 12:13–19

    Article  Google Scholar 

  • Glendinning DR (1976) Neo-Tuberosum: new potato breeding material. 4. The breeding system of Neo-Tuberosum, and the structure and composition of the Neo-Tuberosum gene pool. Potato Res 19:27–36

    Article  Google Scholar 

  • Golmirzaie AM, Malagamba P, Pallais N (1994) Breeding potatoes based on true seed propagation. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 499–513

    Google Scholar 

  • Goodrich CE (1863) The origination and test culture of seedling potatoes. Transactions of New York State Agricultural Society 23:89–134

    Google Scholar 

  • Gopal J, Oyama K (2005) Genetic base of Indian potato selections as revealed by pedigree analysis. Euphytica 142:23–31

    Article  Google Scholar 

  • Greiner S, Rausch T, Sonnewald U, Herbers K (1999) Ectopic expression of a tobacco invertase inhibitor prevents cold induced sweetening of potato tubers. Nat Biotechnol 17:708–711

    Article  PubMed  CAS  Google Scholar 

  • Hawkes JG (1990) The potato: Evolution, biodiversity and genetic resources. Belhaven Press, London

    Google Scholar 

  • Hawkes JG, Francisco-Ortega J (1993) The early history of the potato in Europe. Euphytica 70:1–7

    Article  Google Scholar 

  • Haynes KG, Christ BJ (1999) Heritability of resistance to foliar late blight in a diploid hybrid population of Solanum phureja × Solanum stenotomum. Plant Breed 118:431–434

    Article  Google Scholar 

  • Haynes KG, Lu W (2005) Improvement at the Diploid Species Level. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol I: Potato. Science Publishers, Inc., Enfield, pp 101–114

    Google Scholar 

  • Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesise the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus). Proc Natl Acad Sci U S A 97:8699–8704

    Article  PubMed  CAS  Google Scholar 

  • Hermsen JGTh (1994) Introgression of genes from wild species, including molecular and cellular approaches. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 515–538

    Google Scholar 

  • Hermsen JGT, Ramanna MS (1973) Double-bridge hybrids of Solanum bulbocastanum and cultivars of Solanum tuberosum. Euphytica 22:457–466

    Article  Google Scholar 

  • Hermundstad SA, Peloquin SJ (1987) Breeding at the 2x level and sexual polyploidization. In: Jellis GJ, Richardson DE (eds) The production of new potato varieties. Cambridge University Press, Cambridge, pp 197–210

    Google Scholar 

  • Hijmans RJ (2001) Global distribution of the potato crop. Am J Potato Res 78:403–412

    Google Scholar 

  • Hils U, Pieterse L (2005) World catalogue of potato varieties. Agrimedia GmbH, Bergen/Dumme, Germany

    Google Scholar 

  • Hosaka K (2004) Evolutionary pathway of T-type chloroplast DNA in potato. Am J Potato Res 81:153–158

    Google Scholar 

  • Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell, Oxford, pp 30–59

    Google Scholar 

  • Huaman Z, Spooner DM (2002) Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am J Botany 89:947–965

    Article  Google Scholar 

  • Huaman Z, Golmirzaie A, Amoros W (1997) The Potato. In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in trust: Conservation and use of plant genetic resources in CGIAR centres. Cambridge University Press, Cambridge, pp 21–28

    Google Scholar 

  • Huaman Z, Ortiz R, Gomez R (2000a) Selecting a Solanum tuberosum subsp. andigena core collection using morphological, geographical, disease and pest descriptors. Am J Potato Res 77:183–190

    Google Scholar 

  • Huaman Z, Ortiz R, Zhang D, Rodriguez F (2000b) Isozyme analysis of entire and core collections of Solanum tuberosum subsp. andigena potato cultivars. Crop Sci 40:273–276

    Article  CAS  Google Scholar 

  • Huaman Z, Hoekstra R, Bamberg JB (2000c) The inter-genebank potato database and the dimensions of available wild potato germplasm. Am J Potato Res 77:353–362

    Google Scholar 

  • Huang S (2005) Discovery and characterization of the major late blight resistance complex in potato. Thesis Wageningen University, The Netherlands

  • Jansky SH, Yerk GL, Peloquin SJ (1990) The use of potato haploids to put 2x wild species germplasm into a usable form. Plant Breed 104:290–294

    Article  Google Scholar 

  • Jansky SH, Davis GL, Peloquin SJ (2004) A genetic model for tuberization in potato haploid-wild species hybrids grown under long-day conditions. Am J Potato Res 81:335–339

    Google Scholar 

  • Jin LP, Qu DY, Xie KY, Bian CS, Duan SG (2004) Potato germplasm, breeding studies in China. Proc 5th World Potato Congress, Kunming, China, pp 175–178

  • Jones RAC (1985) Further studies on resistance-breaking strains of potato virus X. Plant Pathol 34:182–189

    Article  Google Scholar 

  • Knight TA (1807) On raising of new and early varieties of the potato (Solanum tuberosum). Transactions of the Horticultural Society of London 1:57–59

    Google Scholar 

  • Landeo JA (2002) Durable resistance: Quantitative/Qualitative resistance. In: Lizarraga C (ed) Proc Global Initiative on Late Blight Conf, 11–13 July 2002, Hamburg, Germany, pp 29–36

  • Lang J (2001) Notes of a potato watcher. Texas A&M University Press, College Station, Texas

    Google Scholar 

  • Maris B (1989) Analysis of an incomplete diallel cross among three ssp. tuberosum varieties and seven long-day adapted ssp. andigena clones of the potato (Solanum tuberosum L.). Euphytica 41:163–182

    Article  Google Scholar 

  • McGregor CE, van Treuren R, Hoekstra R, van Hintum TJ (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor Appl Genet 104:146–156

    Article  PubMed  CAS  Google Scholar 

  • Mohammed A, Douches DS, Pett W, Grafius E, Coombs J, Liswidowati W, Li W, Madkour MA (2000) Evaluation of potato tuber moth (Lepidoptera: Gelechiidae) resistance in tubers of Bt-cry5 transgenic potato lines. J Econ Entomol 93:472–476

    Article  PubMed  CAS  Google Scholar 

  • Mulema JMK, Olanya OM, Adipala E, Wagoire W (2004/5) Stability of late blight resistance in Population B potato clones. Potato Res 47:11–24

    Article  Google Scholar 

  • Naess SK, Bradeen JM, Wielgus SM, Haberlach GT, McGrath JM, Helgeson JP (2000) Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theor Appl Genet 101:697–704

    Article  CAS  Google Scholar 

  • Ortiz R (1997) Breeding for potato production from true seed. Plant Breeding Abstracts 67:1355–1360

    Google Scholar 

  • Ortiz R (1998) Potato breeding via ploidy manipulations. In: Janick J (ed) Plant breeding reviews, vol 16. Wiley, New York, pp 15–86

    Google Scholar 

  • Ortiz R (2001) The state of the use of potato genetic diversity. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CABI Publishing, Wallingford, pp 181–200

    Google Scholar 

  • Osusky M, Osuska L, Kay W, Misra S (2005) Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theor Appl Genet 111:711–722

    Article  PubMed  CAS  Google Scholar 

  • Paal J, Henselewski H, Muth J, Meksem K, Menendez CM, Salamini F, Ballvora A, Gebhardt C (2004) Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J 38:285–297

    Article  PubMed  CAS  Google Scholar 

  • Pandey SK, Kaushik SK, (2003) Origin, evolution, history and spread of potato. In: Khurana SMP, Minhas JS, Pandey SK (eds) The potato—production and utilization in sub-tropics. Mehta Publishers, New Delhi, pp 15–24

    Google Scholar 

  • Plaisted RL, Hoopes RW (1989) The past record and future prospects for the use of exotic potato germplasm. Am Potato J 66:603–627

    Article  Google Scholar 

  • Provan J, Powell W, Dewar H, Bryan G, Machray GC, Waugh R (1999) An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity. Proc Royal Society Series B 266:633–639

    Article  Google Scholar 

  • Raker CM, Spooner DM (2002) Chilean tetraploid cultivated potato, Solanum tuberosum, is distinct from the Andean populations: microsatellite data. Crop Sci 42:1451–1458

    Article  Google Scholar 

  • Romer S, Lubeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272

    Article  PubMed  CAS  Google Scholar 

  • Ross H (1986) Potato breeding—problems and perspectives. Advances in plant breeding 13. Paul Parey, Berlin

    Google Scholar 

  • Rousselle-Bourgeois F, Rousselle P (1992) Creation et selection de populations diploide de pomme de terre (Solanum tuberosum L.). Agronomie 12:59–67

    Article  Google Scholar 

  • Schwall GP, Safford R, Westcott RJ, Jeffcoat R, Tayal A, Shi YC, Gidley MJ, Jobling SA (2000) Production of very high amylose potato starch by inhibition of SBE A and B. Nat Biotechnol 18:551–554

    Article  PubMed  CAS  Google Scholar 

  • Serrano C, Arce-Johnson P, Torres H, Gebauer M, Gutierrez M, Moreno M, Jordana X, Venegas A, Kalazich J, Holuigue L (2000) Expression of the chicken lysozyme gene in potato enhances resistance to infection by Erwinia carotovora subsp. atroseptica. Am J Potato Res 77:191–199

    CAS  Google Scholar 

  • Simmonds NW (1969) Prospects of potato improvement. Scottish Plant Breeding Station Forty-Eighth Annual Report 1968–69, pp 18–38

  • Simmonds NW (1995) Potatoes. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific and Technical, Harlow, pp 466–471

    Google Scholar 

  • Simmonds NW (1997) A review of potato propagation by means of seed, as distinct from clonal propagation by tubers. Potato Res 40:191–214

    Article  Google Scholar 

  • Smilde WD, Brigneti G, Jagger L, Perkins S, Jones JDG (2005) Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theor Appl Genet 110:252–258

    Article  PubMed  CAS  Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CB, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci U S A 100:9128–9133

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Hajirezaei M-R, Biemelt S (2003) Designer tubers for production of novel compounds. Proc BCPC Int Cong Crop Science and Technology 2003, pp 123–132

  • Spooner DM, Hijmans RJ (2001) Potato systematics and germplasm collecting, 1989–2000. Am J Potato Res 78:237–268

    Article  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005a) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A 102:14694–14699

    Article  PubMed  CAS  Google Scholar 

  • Spooner DM, Nunez J, Rodriguez F, Naik PS, Ghislain M (2005b) Nuclear and chloroplast DNA reassessment of the origin of Indian potato varieties and its implications for the origin of the early European potato. Theor Appl Genet 110:1020–1026

    Article  PubMed  CAS  Google Scholar 

  • Sukhotu T, Kamijima O, Hosaka K (2005) Genetic diversity of the Andean tetraploid cultivated potato (Solanum tuberosum L. subsp. andigena Hawkes) evaluated by chloroplast and nuclear DNA markers. Genome 48:55–64

    Article  PubMed  CAS  Google Scholar 

  • Tai GCC (1994) Use of 2n gametes. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 109–132

    Google Scholar 

  • Tai GCC, De Jong H (1980) Multivariate analyses of potato hybrids. 1. Discrimination between tetraploid-diploid hybrid families and their relationship to cultivars. Can J Genet Cytol 22:227–235

    Google Scholar 

  • Tarn TR, Tai GCC (1983) Tuberosum × Tuberosum and Tuberosum × Andigena potato hybrids: comparisons of families and parents, and breeding strategies for Andigena potatoes in long-day temperate environments. Theor Appl Genet 66:87–91

    Article  Google Scholar 

  • Tek AL, Stevensen WR, Helgeson JP, Jiang J (2004) Transfer of tuber soft rot and early blight resistances from Solanum brevidens into cultivated potato. Theor Appl Genet 109:249–254

    Article  PubMed  CAS  Google Scholar 

  • Trognitz BR, Bonierbale M, Landeo JA, Forbes G, Bradshaw JE, Mackay GR, Waugh R, Huarte MA, Colon L (2001) Improving potato resistance to disease under the global initiative on late blight. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CABI Publishing, Wallingford, pp 385–398

    Google Scholar 

  • Ullstrup AJ (1972) The impacts of the Southern corn leaf blight epidemics of 1970–71. Annu Rev Phytopathol 10:37–50

    Article  Google Scholar 

  • Urwin PE, Green J, Atkinson HJ (2003) Expression of a plant cystatin confers partial resistance to Globodera, full resistance is achieved by pyramiding a cystatin with natural resistance. Mol Breed 12:263–269

    Article  CAS  Google Scholar 

  • Van der Vossen E, Sikkema A, te Lintel-Hekkert B, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    Article  PubMed  CAS  Google Scholar 

  • Visser RGF, Somhorst I, Kuipers GJ, Ruys NJ, Feenstra WJ, Jacobsen E (1991) Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet 225:289–296

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Bradshaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, J.E., Bryan, G.J. & Ramsay, G. Genetic Resources (Including Wild and Cultivated Solanum Species) and Progress in their Utilisation in Potato Breeding. Potato Research 49, 49–65 (2006). https://doi.org/10.1007/s11540-006-9002-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-006-9002-5

Keywords

Navigation