Skip to main content
Log in

Molecular approaches for characterization and use of natural disease resistance in wheat

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Wheat production is threatened by a constantly changing population of pathogen species and races. Given the rapid ability of many pathogens to overcome genetic resistance, the identification and practical implementation of new sources of resistance is essential. Landraces and wild relatives of wheat have played an important role as genetic resources for the improvement of disease resistance. The use of molecular approaches, particularly molecular markers, has allowed better characterization of the genetic diversity in wheat germplasm. In addition, the molecular cloning of major resistance (R) genes has recently been achieved in the large, polyploid wheat genome. For the first time this allows the study and analysis of the genetic variability of wheat R loci at the molecular level and therefore, to screen for allelic variation at such loci in the gene pool. Thus, strategies such as allele mining and ecotilling are now possible for characterization of wheat disease resistance. Here, we discuss the approaches, resources and potential tools to characterize and utilize the naturally occurring resistance diversity in wheat. We also report a first step in allele mining, where we characterize the occurrence of known resistance alleles at the wheat Pm3 powdery mildew resistance locus in a set of 1,320 landraces assembled on the basis of eco-geographical criteria. From known Pm3 R alleles, only Pm3b was frequently identified (3% of the tested accessions). In the same set of landraces, we found a high frequency of a Pm3 haplotype carrying a susceptible allele of Pm3. This analysis allowed the identification of a set of resistant lines where new potentially functional alleles would be present. Newly identified resistance alleles will enrich the genetic basis of resistance in breeding programmes and contribute to wheat improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari, T. B., Anderson, J. M., & Goodwin, S. B. (2003). Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology, 93, 1158–1164.

    Article  CAS  Google Scholar 

  • Allard, R. W., & Shands, R. G. (1954). Inheritance of resistance to stem rust and powdery mildew in cytologically stable spring wheat derived from Triticum timopheevi. Phytopathology, 44, 266–274.

    Google Scholar 

  • Bariana, H. S., Hayden, M. J., Ahmed, N. U., Bell, J. A., Sharp, P. J., & McIntosh, R. A. (2001). Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Australian Journal of Agricultural Research, 52, 1247–1255.

    Article  CAS  Google Scholar 

  • Baum, M., Lagudah, E. S., & Appels, R. (1992). Wide crosses in cereals. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 117–143.

    Article  Google Scholar 

  • Bossolini, E., Krattinger, S. G., & Keller, B. (2006). Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theoretical and Applied Genetics, 113, 1049–1062.

    Article  PubMed  CAS  Google Scholar 

  • Chagué, V., Fahima, T., Dahan, A., Sun, G. L., Korol, A. B., Ronin, Y. I., et al. (1999). Isolation of microsatellite and RAPD markers flanking Yr15 gene of wheat using NILs and bulked segregant analysis. Genome, 42, 1050–1056.

    Article  PubMed  Google Scholar 

  • Chen, Y. P., Wang, H. Z., Cao, A. Z., Wang, C. M., & Chen, P. D. (2006). Cloning of a resistance gene analog from wheat and development of a codominant PCR marker for Pm21. Journal of Integrative Plant Biology, 48, 715–721.

    Article  CAS  Google Scholar 

  • Cloutier, S., McCallum, B. D., Loutre, C., Banks, T. W., Wicker, T., Feuillet, C., et al. (2007). Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Molecular Biology, 65, 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Comai, L., Young, K., Till, B. J., Reynolds, S. H., Greene, E. A., Codomo, C. A., et al. (2004). Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. The Plant Journal, 37, 778–786.

    Article  PubMed  CAS  Google Scholar 

  • De Bustos, A., & Jouve, N. (2003). Characterisation and analysis of new HMW-glutenin alleles encoded by the Glu-R1 locus of Secale cereale. Theoretical and Applied Genetics, 107, 74–83.

    PubMed  Google Scholar 

  • Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A., & Keller, B. (2003). Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America, 100, 15253–15258.

    Article  PubMed  CAS  Google Scholar 

  • Forsström, P., & Merker, A. (2001). Sources of wheat powdery mildew resistance from wheat-rye and wheat-Leymus hybrids. Hereditas, 134, 115–119.

    Article  PubMed  Google Scholar 

  • Griffiths, S., Sharp, R., Foote, T. N., Bertin, I., Wanous, M., Reader, S., et al. (2006). Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 439, 749–752.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, P. K., Varshney, R. K., Sharma, P. C., & Ramesh, B. (1999). Molecular markers and their applications in wheat breeding. Plant Breeding, 118, 369–390.

    Article  CAS  Google Scholar 

  • Helguera, M., Khan, I. A., & Dubcovsky, J. (2000). Development of PCR markers for the wheat leaf rust resistance gene Lr47. Theoretical and Applied Genetics, 100, 1137–1143.

    Article  CAS  Google Scholar 

  • Huang, L., Brooks, S. A., Li, W., Fellers, J. P., Trick, H. N., & Gill, B. S. (2003). Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 164, 655–664.

    PubMed  CAS  Google Scholar 

  • Huang, L., & Gill, B. S. (2001). An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theoretical and Applied Genetics, 103, 1007–1013.

    Article  CAS  Google Scholar 

  • Keller, B., Feuillet, C., & Yahiaoui, N. (2005). Map-based isolation of disease resistance genes from bread wheat: cloning in a supersize genome. Genetical Research, 85, 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Kota, R., Spielmeyer, W., McIntosh, R. A., & Lagudah, E. S. (2006). Fine genetic mapping fails to dissociate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 112, 492–499.

    Article  PubMed  CAS  Google Scholar 

  • Lagudah, E. S., McFadden, H., Singh, R. P., Huerta-Espino, J., Bariana, H. S., & Spielmeyer, W. (2006). Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 114, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Latha, R., Rubia, L., Bennett, J., & Swaminathan, M. S. (2004). Allele mining for stress tolerance genes in Oryza species and related germplasm. Molecular Biotechnology, 27, 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., & Anderson, J. A. (2003). Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome, 46, 817–823.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Sun, Q., Ni, Z., Nevo, E., & Yang, T. (2002). Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 123, 21–29.

    Article  CAS  Google Scholar 

  • Malysheva, L., Ganal, M. W., & Röder, M. S. (2004). Evaluation of cultivated barley (Hordeum vulgare) germplasm for the presence of thermostable alleles of β-amylase. Plant Breeding, 123, 128–131.

    Article  CAS  Google Scholar 

  • Mardi, M., Buerstmayr, H., Ghareyazie, B., Lemmens, M., Mohammadi, S. A., Nolz, R., et al. (2005). QTL analysis of resistance to Fusarium head blight in wheat using a ‘Wangshuibai’-derived population. Plant Breeding, 124, 329–333.

    Article  Google Scholar 

  • Miranda, L. M., Murphy, J. P., Marshall, D., & Leath, S. (2006). Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 113, 1497–1504.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, M., Varshney, R. K., Roy, J. K., Balyan, H. S., & Gupta, P. K. (2000). The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical and Applied Genetics, 100, 584–592.

    CAS  Google Scholar 

  • Rong, J. K., Millet, E., Manisterski, J., & Feldman, M. (2000). A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 115, 121–126.

    Article  CAS  Google Scholar 

  • Rosewarne, G. M., Singh, R. P., Huerta-Espino, J., William, H. M., Bouchet, S., Cloutier, S., et al. (2006). Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theoretical and Applied Genetics, 112, 500–508.

    Article  PubMed  CAS  Google Scholar 

  • Salvi, S., & Tuberosa, R. (2005). To clone or not to clone plant QTLs: Present and future challenges. Trends in Plant Science, 10, 297–304.

    Article  PubMed  CAS  Google Scholar 

  • Scofield, S. R., Huang, L., Brandt, A. S., & Gill, B. S. (2005). Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiology, 138, 2165–2173.

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer, W., McIntosh, R. A., Kolmer, J., & Lagudah, E. S. (2005). Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust co-segregate at a locus on the short arm of chromosome 7D on wheat. Theoretical and Applied Genetics, 111, 731–735.

    Article  PubMed  CAS  Google Scholar 

  • Srichumpa, P., Brunner, S., Keller, B., & Yahiaoui, N. (2005). Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiology, 139, 885–895.

    Article  PubMed  CAS  Google Scholar 

  • Stein, N., Feuillet, C., Wicker, T., Schlagenhauf, E., & Keller, B. (2000). Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proceedings of the National Academy of Sciences of the United States of America, 97, 13436–13441.

  • Tommasini, L., Yahiaoui, N., Srichumpa, P., & Keller, B. (2006). Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theoretical and Applied Genetics, 114, 165–175.

    Article  PubMed  CAS  Google Scholar 

  • Tyryshkin, L. G., Gul’tyaeva, E. I., Alpat’eva, N. V., & Kramer, I. (2006). Identification of effective leaf-rust resistance genes in wheat (Triticum aestivum) using STS markers. Russian Journal of Genetics, 42, 662–666.

    Article  CAS  Google Scholar 

  • William, M., Singh, R. P., Huerta-Espino, J., Islas, S. O., & Hoisington, D. (2003). Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 93, 153–159.

    Article  CAS  Google Scholar 

  • Xie, C., Sun, Q., Ni, Z., Yang, T., Nevo, E., & Fahima, T. (2004). Identification of resistance gene analogue markers closely linked to wheat powdery mildew resistance gene Pm31. Plant Breeding, 124, 198–200.

    Article  Google Scholar 

  • Yahiaoui, N., Brunner, S., & Keller, B. (2006). Rapid generation of new powdery mildew resistance genes after wheat domestication. The Plant Journal, 47, 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui, N., Srichumpa, P., Dudler, R., & Keller, B. (2004). Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. The Plant Journal, 37, 528–538.

    Article  PubMed  CAS  Google Scholar 

  • Yan, G. P., Chen, X. M., Line, R. F., & Wellings, C. R. (2003). Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theoretical and Applied Genetics, 106, 636–643.

    PubMed  CAS  Google Scholar 

  • Zhang, P., Dreisigacker, S., Melchinger, A. E., Reif, J. C., Kazi, A. M., VanGinkel, M., et al. (2005). Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Molecular Breeding, 15, 1–10.

    Article  Google Scholar 

Download references

Acknowledgements

The reported research was supported by the Swiss National Science Foundation grant 3100-105620.We also gratefully acknowledge the gene banks of AWCC (Australia), ICARDA (Syria) and VIR (Russia) for providing us with the FIGS powdery mildew set of landraces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Keller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, N., Street, K., Mackay, M. et al. Molecular approaches for characterization and use of natural disease resistance in wheat. Eur J Plant Pathol 121, 387–397 (2008). https://doi.org/10.1007/s10658-007-9252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9252-3

Keywords

Navigation