Skip to main content
Log in

Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum)

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A gene that controls resistance to chickpea rust (Uromyces ciceris-arietini) has been identified in a recombinant inbred line (RIL) population derived from an interspecific cross between Cicer arietinum (ILC72) × Cicer reticulatum (Cr5-10), susceptible and resistant to rust, respectively. Both parental lines and all RILs displayed a compatible interaction but differed in the level of infection measured as Disease Severity (DS) and Area Under the Disease Progress Curve (AUDPC). Histological studies of the seedlings of resistant parental Cr5-10 line revealed a reduction in spore germination, appressorium formation, number of haustoria per colony and colony size, with little host cell necrosis, fitting the definition of partial resistance. A Quantitative Trait Locus (QTL) explaining 31% of the total phenotypic variation for DS in seedlings and 81% of the AUDPC in adult plants in the field was located on linkage group 7 of the chickpea genetic map. The AUDPC displayed a bimodal distribution with high frequency of susceptible lines and both the AUDPC and markers showed the same distorted segregation. Consequently, it was hypothesised that a single dominant gene (proposed as Uca1/uca1) controlled resistance to rust in adult plants. This allowed us to locate the gene on the genetic linkage map. Two Sequence Tagged Microsatellite Sites (STMS) markers, TA18 and TA180 (3.9 cM apart) were identified that flank the resistance gene. These findings could be the starting point for a Marker-Assisted Selection (MAS) programme for rust resistance in chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbo, S., Molina, C., Jungmam, R., Grusak, M. A., Berkovitch, Z., Reifen, R., et al. (2005). Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 111, 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, F., & Slinkard, A. E. (2004). The extent of embryo and endosperm growth following interspecific hybridization between Cicer arietinum L. and related annual wild species. Genetic Resources and Crop Evolution, 51, 765–772.

    Article  Google Scholar 

  • Cho, S., Chen, W., & Muehlbauer, F. J. (2004). Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theoretical and Applied Genetics, 109, 733–739.

    Article  PubMed  Google Scholar 

  • Churchill, G. A., & Doerge, R. W. (1994). Empirical threshold values for quantitative trait mapping. Genetics, 138, 963–971.

    PubMed  CAS  Google Scholar 

  • Cobos, M. J., Rubio, J., Strange, R. N., Moreno, M. T., Gil, J., & Millán, T. (2006). A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica, 149, 105–111.

    Article  Google Scholar 

  • Díaz-Franco, A., & Pérez-García, P. (1995). Control químico de la roya y la rabia del garbanzo y su influencia en el rendimiento de grano. Revista Mexicana de Fitopatología, 13, 123–125.

    Google Scholar 

  • Dyck, P. L. (1987). The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome, 29, 467–469.

    Google Scholar 

  • FAOSTAT, http://faostat.fao.org. Last updated Februray 2005.

  • Gutiérrez, M. V., Vaz Patto, M. C., Huguet, T., Cubero, J. I., Moreno, M. T., & Torres, A. M. (2005). Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theoretical and Applied Genetics, 110, 1210–1217.

    Article  PubMed  Google Scholar 

  • Heath, M. C. (1981). Resistance of plants to rust fungus. Phytopathology, 71, 971–974.

    Article  Google Scholar 

  • Kosambi, D. D. (1944). The estimation of map distance from recombination values. Annals of Eugenics, 12, 172–175.

    Google Scholar 

  • Ladizinsky, G., & Adler, A. (1976). Genetic relationships among the annual species of Cicer L. Theoretical and Applied Genetics, 48, 197–203.

    Article  Google Scholar 

  • Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, J., Lincoln, S. E., et al. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental populations. Genomics, 1, 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Lehnackers, H., & Knogge, W. (1990). Cytological studies on the infection of barley cultivars with known resistance genotypes by Rhynchosporium secalis. Canadian Journal of Botany, 68, 1953–1961.

    Google Scholar 

  • Nene, Y. L., & Reddy, M. V. (1987). Chickpea diseases and their control. In M. C. Saxena, & K. B. Singh (Eds.) The chickpea pp. 233–270. UK: CAB International.

    Google Scholar 

  • Niks, R. E. (1986). Failure of haustorial development as a factor in slow growth and development of Puccinia hordei in partially resistant barley seedlings. Physiological and Molecular Plant Pathology, 28, 309–322.

    Google Scholar 

  • Niks, R. E., & Dekens, R. G. (1991). Prehaustorial and posthaustorial resistance to wheat leaf rust in diploid wheat seedlings. Phytopathology, 81, 847–851.

    Article  Google Scholar 

  • Niks, R. E., & Rubiales, D. (2002). Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica, 124, 201–216.

    Article  CAS  Google Scholar 

  • Pal, A. B., Brahmappa, R. D. R., & Ullasa, B. A. (1980). Field resistance of pea germ plasm to powdery mildew (Erysiphe polygoni) and rust (Uromyces fabae). Plant Disease, 64, 1085–1086.

    Article  Google Scholar 

  • Parlevliet, J. E., & van Ommeren, A. (1975). Partial resistance of barley rust, Puccinia hordei. II. Relationship between field trials, microplot test and latent period. Euphytica, 24, 293–303.

    Article  Google Scholar 

  • Pfaff, T., & Kahl, G. (2003). Mapping of gene-specific markers on the genetic map of chickpea (Cicer arietinum L.). Molecular Genetics and Genomics, 269, 243–251.

    PubMed  CAS  Google Scholar 

  • Prats, E., Jorrín, J., Llamas, M. J., & Rubiales, D. (2007). Constitutive coumarin accumulation on sunflower leaf surface prevents rust germ tube growth and appressorium differentiation. Crop Science, 47, 1119–1124.

    Google Scholar 

  • Ragazzi, A. (1982). Un grave attacco di ruggine su foglie di cese. (A serious attack of rust on Cicer arietinum leaves). Informatore Fitopatológico, 2, 41–43.

    Google Scholar 

  • Rubiales, D., Moreno, I., Moreno, M. T., & Sillero, J. C. (2001). Identification of partial resistance to chickpea rust (Uromyces ciceris-arietini).Proc. 4th European Conference on grain legumes pp. 194–195. Poland: Cracow.

    Google Scholar 

  • Rubiales, D., & Niks, R. E. (1995). Characterization of Lr34, a mayor gene conferring nonhypersensitive resistance to wheat leaf rust. Plant Disease, 79, 1208–1212.

    Article  Google Scholar 

  • Rubiales, D., & Niks, R. E. (1996). The pre-appressorial avoidance mechanism to rust fungi in Hordeum chilense genotypes. Physiological and Molecular Plant Pathology, 49, 89–101.

    Article  Google Scholar 

  • Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67, 1051–1056.

    CAS  Google Scholar 

  • Sillero, J. C., & Rubiales, D. (2002). Histological characterization of resistance to Uromyces viciae-fabae in faba bean. Phytopathology, 92, 294–299.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R. P., Kazi, M., & Huerta-Espino, J. (1998). Lr46, a gene conferring slow rusting resistance to leaf rust in wheat. Phytopathology, 88, 890–894.

    Article  CAS  PubMed  Google Scholar 

  • Stakman, E. C., Steward, D. M., & Loegering, W. Q. (1962). Identification of physiologic races of Puccinia graminis var. tritici. Agricultural Experimental Station Technical Bulletin. Scientific Journal Series, paper 4691, pp. 1–53.

  • Subrahmanyam, P., McDonald, D., Reddy, L. J., Nigam, S. N., & Smith, D. H. (1993). Origin and utilization of rust resistance in groundnut. In T. Jacobs, & J. E. Parlevliet (Eds.) Durability of Disease Resistance pp. 147–158. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Tautz, D., & Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12, 4127–4138.

    Article  PubMed  CAS  Google Scholar 

  • Tekeoglu, M., Rajesh, P. N., & Muehlbauer, F. J. (2002). Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theoretical and Applied Genetics, 105, 847–854.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalakshmi, S., Yadav, K., Kushwaha, C. H., Sarode, S. B., Srivastava, C. P., Chand, R., et al. (2005). Identification of RAPD markers linked to the rust (Uromyces fabae) resistance gene in pea (Pisum sativum). Euphytica, 144, 265–274.

    Article  CAS  Google Scholar 

  • Wang, S., Basten, C. J., & Zeng, Z. B. (2004). Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University. Raleigh N.C. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).

  • Winter, P., Benko-Iseppon, A. M., Hüttel, B., Ratnaparkhe, M., Tullu, A., Sonnante, G., et al. (2000). A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance gene for fusarium wilt races 4 and 5. Theoretical and Applied Genetics, 101, 1155–1163.

    Article  CAS  Google Scholar 

  • Winter, P., Pfaff, T., Udupa, S. M., Hüttel, B., Sharma, P. C., Sahim, S., et al. (1999). Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Molecular Genetics and Genomics, 262, 90–101.

    CAS  Google Scholar 

  • Wynn, W. K. (1976). Appressorial formation over stomates by bean rust: Response to a surface contact stimulus. Phytopathology, 66, 136–146.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the European Union for funding this research project (GLIP, Contract no.: FOOD-CT-2004-506223) and INIA (Contract no.:RTA04-067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madrid, E., Rubiales, D., Moral, A. et al. Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). Eur J Plant Pathol 121, 43–53 (2008). https://doi.org/10.1007/s10658-007-9240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9240-7

Keywords

Navigation