Skip to main content
Log in

Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Chickpea is a staple protein source in many Asian and Middle Eastern countries. The seeds contain carotenoids such as beta-carotene, cryptoxanthin, lutein and zeaxanthin in amounts above the engineered beta-carotene-containing “golden rice” level. Thus, breeding for high carotenoid concentration in seeds is of nutritional, socio-economic, and economic importance. To study the genetics governing seed carotenoids in chickpea, we studied the relationship between seed weight and concentrations of beta-carotene and lutein by means of high-performance liquid chromatography in segregating progeny from a cross between an Israeli cultivar and wild Cicer reticulatum Ladiz. Seeds of the cross progeny varied with respect to their carotenoid concentration (heritability estimates ranged from 0.5 to 0.9), and a negative genetic correlation was found between mean seed weight and carotenoid concentration in the F3. To determine the loci responsible for the genetic variation observed, the population was genotyped using 91 sequence tagged microsatellite site markers and two CytP450 markers to generate a genetic map consisting of nine linkage groups and a total length of 344.6 cM. Using quantitative data collected for beta-carotene and lutein concentration and seed weight of the seeds of the F2 population, we were able to identify quantitative trait loci (QTLs) by interval mapping. At a LOD score of 2, four QTLs for beta-carotene concentration, a single QTL for lutein concentration and three QTLs for seed weight were detected. The results of this investigation may assist in improving the nutritional quality of chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbo S, Grusak M, Tzuk T, Reifen R (2000) The relationship between seed size and calcium concentration in chickpea (Cicer arietinum L.) seed. Plant Breed 119:427–431

    Article  CAS  Google Scholar 

  • Berger J, Abbo S, Turner NC (2003) Ecogeography of annual wild Cicer species: the poor state of the world collection. Crop Sci 43:1076–1090

    Google Scholar 

  • Cahaner A, Hillel J (1980) Estimating heritability and genetic correlation between traits from generations F2 and F3 of self-fertilizing species: a comparison of three methods. Theor Appl Genet 58:33–38

    Article  Google Scholar 

  • Cho S, Kumar J, Jeff LS, Anupama K, Tefera F, Muehlbauer F (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128:285–292

    Article  CAS  Google Scholar 

  • Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Biol 49:557–583

    Article  CAS  Google Scholar 

  • FAO (2003) http://www.fao.org. Production database

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Google Scholar 

  • Gey KF, Moser UK, Jordan P, Staehelin HB, Eichholzer M, Ludin E (1993) Increased risk of cardiovascular disease at suboptimal plasma concentrations of essential antioxidants: an epidemiological update with special attention to carotene and vitamin C. Am J Clin Nutr 57[Suppl]:787S–797S

    CAS  PubMed  Google Scholar 

  • Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, and Willett WC (1995) Intakes of carotenoids and retinal in relation to risk of prostate cancer. J Natl Cancer Inst 87:1767–1776

    CAS  PubMed  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Google Scholar 

  • Hovav R, Upadhyaya KC, Beharav A, Abbo S (2003) Major flowering time gene and polygene effect on chickpea seed weight. Plant Breed 122:539–541

    Google Scholar 

  • Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210–215

    Article  PubMed  Google Scholar 

  • Khachik F, Bernstein PS, Gerland DL (1997) Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthamol Vis Sci 38:1802–1811

    CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Ladizinsky G, Adler A (1976) The origin of chickpea Cicer arietinum L. Euphytica 25:211–217

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lev-Yadun, S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:1062–1063

    Article  PubMed  Google Scholar 

  • McLachlan GJ, Basford KE (1988) Mixture models: inference and applications to clustering. Marcel Dekker, New York

    Google Scholar 

  • Meydani M, Martin A, Ribaya Mercado JD, Gong J, Blumberrg JB, Russel RM (1994) Beta-carotene supplementation increases antioxidant capacity of plasma in older women. J Nutr 124:2397–2403

    CAS  Google Scholar 

  • Michaels SD, John MC, Amasino RM (1994) Removal of polysaccharides from plant DNA by ethanol precipitation. Biotechniques 17:274–276

    CAS  PubMed  Google Scholar 

  • Niknejad M, Khosh-Khui M, Ghorashi RS (1971) Inheritance of seed size in chickpea (Cicer arietinum L). Crop Sci 11:768–769

    Google Scholar 

  • Or E, Hovav R, Abbo S (1999) A major gene for flowering time in chickpea. Crop Sci 39:315–322

    Google Scholar 

  • Reifen R (2002) Vitamin A as an anti inflammatory agent. Proc Nutr Soc 3:397–400

    Article  Google Scholar 

  • Sall J, Lehmann A (1996) JMP start statistics. Duxbury Press, Belmont

    Google Scholar 

  • Santos CAF, Simon PW (2002) QTL analysis reveals clustered loci for accumulation of major pro vitamin A carotenes and lycopene in carrot roots. Mol Genet Genomics 268:122–129

    Article  CAS  PubMed  Google Scholar 

  • Santos MS, Leka LS, Ribaya Mercado JD, Russel RM, Meydani M, Hennekens CH, Gaziano JM, Meydani SN (1998) Beta-carotene-induced enhancement of natural killer cell activity in elderly men: an investigation of the role of cytokines. Am J Clin Nutr 66:917–924

    Google Scholar 

  • Stahl W, Sies W (1998) The role of carotenoids and retinoids in gap junctional communication. Int J Vitam Nutr Res 68:354–359

    CAS  PubMed  Google Scholar 

  • StatSoft (1999) statistica for Windows (computer program manual). StatSoft, Tulsa, Okla.

  • Van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811

    CAS  Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Mailepaard C (2002) mapqtl-mapchart 4.0, software for the calculation of QTL positions on genetic maps. Pudoc, Plant Research International, Wageningen

    Google Scholar 

  • Weising K, Nybom H, Wolf K, Meyer W (1995) DNA fingerprinting in plants and fungi. CRS Press, Boca Raton

    Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L) genome. Mol Gen Genet 262:90–101

    Article  CAS  PubMed  Google Scholar 

  • Winter P, Benko-Iseppon A-M, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum×C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Google Scholar 

  • Ye X, Al Babili, Kioti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Ziegler RG (1989) A review of epidemiologic evidence that carotenoids reduce the risk of cancer. J Nutr 119:116–122

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the EC for financial support (Contract QLK1-CT-2001-70537). P.W. was supported by the Bundesminister für wirtschaftliche Zusammenarbeit (BMZ, Grant 2001.7860.8-001.00). This work was partly funded by a grant from the Chief Scientist Foundation of the Israeli Ministry of Agriculture and Rural Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abbo.

Additional information

Communicated by F.J. Muehlbauer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbo, S., Molina, C., Jungmann, R. et al. Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 111, 185–195 (2005). https://doi.org/10.1007/s00122-005-1930-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-1930-y

Keywords

Navigation