Skip to main content
Log in

Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Model plants are facilitating the genetic characterization and comparative mapping of a number of traditional crops. Medicago truncatula has been widely accepted as a model plant to this end as it provides the essential tools for multiple aspects of legume genetics and genomics. A large set of markers from highly conserved M. truncatula gene regions is being created and used to establish a worldwide framework for comparative genomic studies in legumes. We have investigated the potential for cross-species amplification of 209 expressed sequence tag (EST)-based and 33 bacterial artificial chromosome (BAC)-based microsatellites from M. truncatula in the three most important European legume pulses—pea, faba bean and chickpea—that might facilitate future comparative mapping. Our results revealed significant transferability of M. truncatula microsatellites to the three pulses (40% in faba bean, 36.3% in chickpea and 37.6% in pea). The percentage of M. truncatula EST-SSRs (simple sequence repeats) amplified in the three crops (39–43%) was twofold higher than that of the genomic SSRs (21–24%). Sequence analysis determined that the level of conservation in the microsatellite motif was very low, while the flanking regions were generally well conserved. The variations in the sequences were mainly due to changes in the number of repeat motifs in the microsatellite region combined with indel and base substitutions. None of the functional microsatellites showed direct polymorphism among the parental genotypes tested, consequently preventing their immediate use for mapping purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Avila CM, Sillero JC, Rubiales D, Moreno MT, Torres AM (2003) Identification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces Viciae-fabae) in Vicia faba L. Theor Appl Genet 107:353–358

    Google Scholar 

  • Avila CM, Satovic Z, Sillero JC, Rubiales D, Moreno MT, Torres AM (2004) Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L). Theor Appl Genet 108:1071–1078

    Google Scholar 

  • Barnes S (2002) Comparing Arabidopsis to other flowering plants. Curr Opinion Plant Biol 5:128–133

    Google Scholar 

  • Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E.urophylla. Theor Appl Genet 97:816–827

    Google Scholar 

  • Butcher PA, Decroocq S, Gray Y, Moran GF (2000) Development, inheritance and cross-species amplification of microsatellite markers from Acacia mangium. Theor Appl Genet 101:1282–1290

    Google Scholar 

  • Byrne M, Marquez-Garcia MI, Uren T, Smith DS, Moran GF (1996) Conservation and genetics diversity of microsatellite loci in the genus Eucalyptus. Aust J Bot 44:331–341

    Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oriza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Kalo P, Penmetsa RV, Seres A, Kulikova O, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker co-linearity with Medicago sativa. Genetics 166:1463–502

    Article  CAS  PubMed  Google Scholar 

  • Choumane W, Winter P, Weigand F, Kahl G (2000) Conservation and variability of sequence-tagged microsatellite sites (STMSs) from chickpea (Cicer arietinum L.) within the genus Cicer. Theor Appl Genet 101:269–278

    Article  CAS  Google Scholar 

  • Cook DR (1999) Medicago truncatula-a model in the making. Curr Opinion Plant Biol 2:301–304

    Google Scholar 

  • Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Sacharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:115–1123

    Google Scholar 

  • Dayanandan S, Kamaljit SB, Kesseli R (1997) Conservation of microsatellites among tropical trees (Leguminosae). Am J Bot 84:1658–1663

    Google Scholar 

  • Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106: 912–922

    CAS  PubMed  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach (Prunus persica) Batsch). Theor Appl Genet 105:127–138

    Article  CAS  PubMed  Google Scholar 

  • Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for phenotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  CAS  PubMed  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, Chekhoskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  CAS  PubMed  Google Scholar 

  • Foster-Hartnett D, Mudge J, Danesh D, Yan H, Larsen D, Denny R, Young ND (2002) Comparative genome analysis of sequences sampled from a small region on soybean molecular linkage group ‘G’. Genome 45:634–645

    Google Scholar 

  • Frugoli J, Harris J (2001) Medicago truncatula on the move. Plant Cell 13:458–63

    Article  CAS  PubMed  Google Scholar 

  • Frugoli JA, Dong-Jin K, Hui-Mei P, Young-Woo N, Varma P, Cook DR (1999) Why Medicago truncatula? The characteristics of a model system with emphasis on suitability for map-based cloning of nodulation related genes. In: 7th Plant Anim Genome Conf. San Diego, Calif.

  • Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Grant D, Cregan P, Shoemarker RC (2000) Genome organization in dicots: genome duplication in A rabidopsis and synteny between Soybean and Arabidopsis. Proc Natl Acad Sci USA 97:4168–4173

    Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Sing R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323

    Google Scholar 

  • Hempel K and Peakall R (2003) Cross-species amplification from crop soybean Glycine max provides informative microsatellite markers for the study of inbreeding wild relatives. Genome 46:382–393

    Google Scholar 

  • Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71

    Article  CAS  Google Scholar 

  • Huguet T, Thoquet P, Gherardi M, Kereszt A, Ane JM, Vilotte L, Cardinet G, Baquerizo E, Santoni S, Prosperi JM (2001) The molecular linkage map of the model legume Medicago truncatula: a tool for legume genome comparison and gene mapping. In: 4th Workshop Medicago truncatula. University of Wisconsin, Madison, p 51

  • Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3:9 (http://www.biomedcentral.com/1471-2229/3/9)

    Google Scholar 

  • Kuleung C, Baenziger PS, Dweikat I (2004) Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet 108:1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:1111–1115

    CAS  PubMed  Google Scholar 

  • Lassner MW, Peterson P, Yoder JI (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–128

    Google Scholar 

  • Lee JM, Grant D, Vallejos CE, Shoemarker RC (2001) Genome organization in dicots. II. Arabidopsis as a ‘bridging species’ to resolve genome evolution events among legumes. Theor Appl Genet 103:765–773

    Google Scholar 

  • Liewlaksaneeyanawin C, Ritland CE, EL-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369

    Google Scholar 

  • Marek LF, Mudge J, Darnielle L, Grant D, Hanson N, Paz M, Huihuang Y, Denny R, Larson K, Foster-Hartnett D, Cooper A, Danesh D, Larsen D, Schmidt T, Staggs R, Crow JA, Retzel E, Young ND, Shoemarker RC (2001) Soybean genomic survey: BAC-end sequences near RFLP and SSR markers. Genome 44:472–581

    Google Scholar 

  • Millán T, Rubio J, Iruela M, Daly K, Cubero JI, Gil J (2003) Markers associated with Ascochyta blight resistance in chickpea and their potential in marker assisted selection. Field Crop Res 84:373–384

    Google Scholar 

  • Pandian A, Ford R, Taylor WJ (2000) Transferability of sequence-tagged microsatellite Sites (STMS) primers across major pulses. Plant Mol Biol Rep 18:1–8

    Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) Simple sequence repeats (SSRs) within the genus and other legume genera: Implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    CAS  PubMed  Google Scholar 

  • Röder MS, Plaschke J, Koning SU, Borner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellite wheat. Mol Genet Genomics 246:327–333

    Google Scholar 

  • Roman B, Torres AM, Rubiales D, Cubero JI, Satovic Z (2002) Mapping of Quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 45:1057–1063

    Google Scholar 

  • Roman B, Satovic Z, Avila CM, Rubiales D, Moreno MT, Torres AM (2003) Locating genes associated with Ascochyta fabae resistance in Vicia faba. Aust J Agric Res 54:85–90

    Google Scholar 

  • Rossetto (2001) Sourcing of SSR markers from related plant species. In: Henry RJ (ed) Plant genotyping: the DNA fingerprinting of plants. CABI, Wallingford, pp 211–224

  • Rossetto M, Harriss FCL, Mclauchlan A, Henry RJ, Baverstock PR, Lee LS (2000) Interspecific amplification of tea tree (Melaleuca alternifolia - Myrtaceae) microsatellite loci-potential implications for conservation studies. Aust J Bot 48:367–373

    Google Scholar 

  • Rubio J, Hajj Moussa E, Kharrat M, Moreno MT, Millan T, Gil J (2003) Two genes and linked RAPD markers involved in resistance to Fusarium oxisporum f. sp. Ciceris race 0 in chickpea. Plant Breed 122: 188–191

    Google Scholar 

  • Saha MC, RoufMian MA, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rosetto M, Ablett EM, Lee LS, Henry RJ (2000). Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  • Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352

    Article  CAS  Google Scholar 

  • Steinkellner H, Lexer C, Turetschek E, Glössl J (1997) Conservation of (GA)n microsatellite loci between Quercus species. Mol Ecol 6:1189–1194

    Article  CAS  Google Scholar 

  • Torres AM, Weeden NF, Martin A (1993) Linkage among isoenzymes, RFLPs and RAPD markers in Vicia faba. Theor Appl Genet 85:937–945

    Google Scholar 

  • Valderrama MR, Román B, Satovic Z, Rubiales D, Cubero JI, Torres AM (2004) Locating genes associated with Orobanche crenata resistance in pea. Weed Res 44:323–328

    Google Scholar 

  • Westman AL, Kresovich S (1998) The potential for cross-taxa simple-sequence repeat (SSR) amplification between Arabidopsis thaliana L. and crop brassicas. Theor Appl Genet 96:272–281

    Google Scholar 

  • White G, Powell W (1997) Cross-species amplification of SSR loci in the Meliaceae family. Mol Ecol 6:1195–1197

    Google Scholar 

  • Yan H, Mudge J, Kim DJ, Shoemarker RC, Cook DR, Young ND (2003) Estimates of conserved microsynteny among the genomes of Glycine max,Medicago truncatula and Arabidopsis thaliana. Theor Appl Genet 106:1256–1265

    Google Scholar 

  • Young ND, Mudge J, Ellis TH N (2003) Legumes genomes: more than peas in a pod. Curr Opinion Plant Biol 6:199–204

    Google Scholar 

  • Yu JK, La Rota M, Kantety RV, Sorrell ME (2004) EST derived SSR markers for comparative mapping in wheat and rice. Mol Gen Genomics 271:742–751

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Comisión Interministerial de Ciencia y Tecnología (CICYT) (grant no. AGL2001-2018-CO2-01). M.C. Vaz Patto would like to acknowledge financial support from Fundação para a Ciência e a Tecnologia, Lisboa, Portugal (SFRH/BPD/5697/2001). M.V. Gutierrez was supported by a fellowship from the Instituto de Investigación y Formación Agroalimentaria y Pesquera (IFAPA), Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Torres.

Additional information

Communicated by F.J. Muehlbauer

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, M.V., Vaz Patto, M.C., Huguet, T. et al. Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110, 1210–1217 (2005). https://doi.org/10.1007/s00122-005-1951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-1951-6

Keywords

Navigation