Skip to main content
Log in

Culture, characterization and differentiation of cells from buffalo (Bubalus bubalis) amnion

  • Brief Report
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Stem cells present an important tool in livestock assisted reproduction and veterinary therapeutic field such as tissue engineering. We report for the first time isolation of pluripotent stem cell-like cells expressing pluripotency markers (alkaline phospahatase, OCT-4, NANOG and SOX-2) from the amnion of water buffalo (Bubalus bubalis). The cells showed no apparent abnormalities in their chromosomal profiles before and after cryopreservation. The cytochemical staining revealed that pluripotent cells were capable of undergoing directed differentiation in vitro into osteocytes. It could be inferred that amnion-derived pluripotent stem cell-like cells can be isolated, cultured for many passages and differentiated into mesoderm lineage, and may be an alternative source to mesenchymal stem cells. These cells can have applications in assisted reproduction, developmental biological and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Anand T, Kumar D, Singh MK, Shah RA, Chauhan MS, Manik RS, Singla SK, Palta P (2011) Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens. Reprod Domest Anim 46:50–58

    Article  CAS  Google Scholar 

  • Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, Lombardi G, Arienti D, Calamani F, Zatti D, Paul P, Albertini A, Zorzi F, Cavagnini A, Candotti F, Wengler GS, Parolini O (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 78:1439–1448

    Article  Google Scholar 

  • Cibelli JB, Stice SL, Golueke PL, Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA, Robl JM (1998) Transgenic bovine chimeric offspring produced from somatic cell-derived stem like cells. Nat Biotechnol 16:642–646

    Article  CAS  Google Scholar 

  • da Silva ML, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  Google Scholar 

  • Dev K, Gautam SK, Giri SK, Kumar A, Yadav A, Verma V, Kumar P, Singh B (2011) Isolation, culturing and characterization of feeder-independent amniotic fluid stem cells in buffalo (Bubalus bubalis). Res Vet Sci 93:743–748

    Article  Google Scholar 

  • Dragoo JL, Lieberman JR, Lee RS, Deugarte DA, Lee Y, Zuk PA, Hedrick MH, Benhaim P (2005) Tissue engineered bone from BMP-2-transduced stem cells derived from human fat. Plast Reconstr Surg 115:1665–1673

    Article  CAS  Google Scholar 

  • Gupta N, Taneja R, Pandey A, Mukesh M, Singh H, Gupta SC (2007) Replicative senescence, telomere shortening and cell proliferation rate in Gaddi goat’s skin fibroblast cell line. Cell Biol Int 31:1257–1264

    Article  CAS  Google Scholar 

  • In‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai NH (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549

    Article  Google Scholar 

  • Kues WA, Carnwath JW, Niemann H (2005) From fibroblasts to stem cells: implications for cell therapies and somatic cloning. Reprod Fertil Dev 17:125–134

    Article  CAS  Google Scholar 

  • Kumar D, Anand T, Singh KP, Singh MK, Shah RA, Chauhan MS, Singla SK, Palta P, Manik RS (2011) Derivation of buffalo embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. J Assisted Reprod Gen 28:679–688

    Article  Google Scholar 

  • Lovati AB, Corradetti B, Lange Consiglio A, Recordati C, Bonacina E, Bizzaro D, Cremonesi F (2011) Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived proginator cells. Vet Res Commun 35:103–121

    Article  Google Scholar 

  • Marcus AJ, Coyne TM, Black IB, Woodbury D (2008) Fate of amnion-derived stem cells transplanted to the fetal rat brain: migration, survival and differentiation. J Cell Mol Med 12:1256–1264

    Article  CAS  Google Scholar 

  • Miki T, Strom SC (2006) Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2:133–142

    Article  CAS  Google Scholar 

  • Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Article  CAS  Google Scholar 

  • Mimeault M, Batra SK (2008) Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 4:27–49

    Article  Google Scholar 

  • Nanda AS, Nakao T (2003) Role of buffalo in the socioeconomic development of rural Asia: current status and future prospectus. Anim Sci J 74:443–455

    Article  Google Scholar 

  • Nowak-Imialek M, Kues W, Carnwath JW, Niemann H (2011) Pluripotent stem cells and reprogrammed cells in farm animals. Microsc Microanal 17:197–474

    Article  Google Scholar 

  • Parry S, Strauss JF 3rd (1998) Pre-mature rupture of the fetal membranes. N Engl J Med 338:663–670

    Article  CAS  Google Scholar 

  • Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, Surbek DV (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 194:664–673

    Article  CAS  Google Scholar 

  • Prusa AR, Marton E, Rosner M, Bernasch G, Hengstschlager M (2003) Oct-4 expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 18:1489–1493

    Article  Google Scholar 

  • Samandari MH, Adibi S, Khoshzaban A, Aghazadeh S, Dihimi P, Torbaghan SS, Keshel SH, Shahabi Z (2011) Human amniotic membrane, best healing accelerator, and the choice of bone induction for vestibuloplasty technique (an animal study). Transpl Res Risk Manag 3:1–8

    Google Scholar 

  • Shim H, Gutierrez-Adan A, Chen LR, BonDurant RH, Behboodi E, Anderson GB (1997) Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod 57:1089–1095

    Article  CAS  Google Scholar 

  • Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Singh AK, Manik RS, Sodhi M, Mukesh M (2009) Reproductive biotechniques in buffalo: status, prospects and challenges. Reprod Fertil Dev 14:499–507

    Article  Google Scholar 

  • Singh B, Gautam SK, Chauhan MS, Singla SK, Kumar S, Kumar V, Yadav PS (2011) Cellular reprogramming-advances and opportunities for applications in veterinary and animal sciences. In: Berhardt Leon V (ed) Advances in medicine and biology, vol 16. Nova Science Publishers, NY, pp 194–214

    Google Scholar 

  • Talbot NC, Blomberg LA (2008) The pursuit of ES cell lines of domestic ungulates. Stem Cell Rev 4:235–254

    Article  CAS  Google Scholar 

  • Verma V, Gautam SK, Singh B, Manik RS, Palta P, Singla SK, Goswami SL, Chauhan MS (2007) Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol Reprod Dev 74:520–529

    Article  CAS  Google Scholar 

  • Yadav PS, Kues WA, Herrmann D, Niemann H (2005) Bovine ICM derived cells express the Oct4-ortholog. Mol Reprod Dev 72:182–190

    Article  CAS  Google Scholar 

  • Yadav PS, Mann A, Singh V, Yashveer S, Sharma RK, Singh I (2011) Expression of pluripotency genes in buffalo (Bubalus bubalis) amniotic fluid cells. Reprod Domest Anim 46:705–711

    Article  CAS  Google Scholar 

  • Yadav PS, Singh RK, Singh B (2012) Fetal stem cells in farm animals—applications in health and production. Agric Res 1:67–77

    Article  Google Scholar 

  • Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79:528–535

    Article  Google Scholar 

  • Zheng YM, Zhao HY, Zhao XE, Quan FS, Hau S, He XY, Liu J, He XN, Lin H (2009) Development of cloned embryos from porcine neural stem cells and amniotic fluid derived stem cells transfected with enhanced green fluorescence protein gene. Reproduction 137:793–801

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to fully acknowledge Department of Biotechnology, Government of India, for financial support.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Yadav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, A., Yadav, R.P., Singh, J. et al. Culture, characterization and differentiation of cells from buffalo (Bubalus bubalis) amnion. Cytotechnology 65, 23–30 (2013). https://doi.org/10.1007/s10616-012-9464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9464-z

Keywords

Navigation