Skip to main content

Advertisement

Log in

The Pursuit of ES Cell Lines of Domesticated Ungulates

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

In contrast to differentiated cells, embryonic stem cells (ESC) maintain an undifferentiated state, have the ability to self-renew, and exhibit pluripotency, i.e., they can give rise to most if not all somatic cell types and to the germ cells, egg and sperm. These characteristics make ES cell lines important resources for the advancement of human regenerative medicine, and, if established for domesticated ungulates, would help make possible the improvement of farm animals through their contribution to genetic engineering technology. Combining other genetic engineering technologies, such as somatic cell nuclear transfer with ESC technology may result in synergistic gains in the ability to precisely make and study genetic alterations in mammals. Unfortunately, despite significant advances in our understanding of human and mouse ESC, the derivation of ES cell lines from ungulate species has been unsuccessful. This may result from a lack of understanding of species-specific mechanisms that promote or influence cell pluripotency. Thorough molecular characterizations, including the elucidation of stem cell “marker” signaling cascade hierarchy, species-appropriate pluripotency markers, and pluripotency-associated chromatin alterations in the genomes of ungulate species, should improve the chances of developing efficient, reproducible technologies for the establishment of ES cell lines of economically important species like the pig, cow, goat, sheep and horse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Evans, M. J., Notarianni, E., Laurie, S., & Moor, R. M. (1990). Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocyst. Theriogenology, 33, 125–128.

    Article  Google Scholar 

  2. Bradley, A. (1987). Production and analysis of chimaeric mice. In E. J. Robertson (Ed.), Teratocarcinomas and embryonic stem cells: a practical approach (pp. 113–151). Oxford: IRL.

    Google Scholar 

  3. Rideout, W. M., Wakayama, T., Wutz, A., et al. (2000). Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nature Genetics, 24, 109–110.

    Article  PubMed  CAS  Google Scholar 

  4. Perrier, A. L., Tabar, V., Barberi, T., et al. (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 12543–12548.

    Article  PubMed  CAS  Google Scholar 

  5. Takagi, Y., Takahashi, J., Saiki, H., et al. (2005). Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. Journal of Clinical Investigation, 115, 102–109.

    PubMed  CAS  Google Scholar 

  6. Carlson, B. M. (1981). Patten’s foundations of embryology (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  7. Talbot, N. C., Rexroad Jr, C. E., Pursel, V. G., Powell, A. M., & Nel, N. D. (1993a). Culturing the epiblast cells of the pig blastocyst. In Vitro Cellular and Developmental Biology Animal, 29A, 543–554.

    Article  PubMed  CAS  Google Scholar 

  8. Talbot, N. C., & Garrett, W. M. (2001). Ultrastructure of the embryonic stem cells of the 8-day pig blastocyst before and after in vitro manipulation: development of junctional apparatus and the lethal effects of PBS mediated cell–cell dissociation. Anatomical Record, 264, 101–113.

    Article  PubMed  CAS  Google Scholar 

  9. Vejlsted, M., Avery, B., Gjorret, J. O., & Maddox-Hyttel, P. (2005). Effect of leukemia inhibitory factor (LIF) on in vitro produced bovine embryos and their outgrowth colonies. Molecular Reproduction and Development, 70, 445–454.

    Article  PubMed  CAS  Google Scholar 

  10. Brooks, F. A., & Gardner, R. L. (1997). The origin and efficient derivation of embryonic stem cells in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 94, 5709–5712.

    Article  Google Scholar 

  11. Eistetter, H. R. (1989). Pluripotent embryonal stem cell lines can be established from disaggregated mouse morulae. Development, Growth & Differentiation, 31, 275–282.

    Article  Google Scholar 

  12. Strelchenko, N., Verlinsky, O., Kukharenko, V., & Verlinsky, Y. (2004). Morula-derived human embryonic stem cells. Reproductive Biomedicine Online, 9, 623–629.

    PubMed  Google Scholar 

  13. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  14. Martin, G. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  15. Robertson, E. J. (1987). Embryo-derived stem cell lines. In E. J. Robertson (Ed.), Teratocarcinomas and embryonic stem cells: a practical approach (pp. 71–112). Oxford: IRL.

    Google Scholar 

  16. Thomson, J. A., Kalishman, J., Golos, T. G., et al. (1995). Isolation of a primate embryonic stem cell line. Proceedings of the National Academy of Sciences of the United States of America, 92, 7844–7848.

    Article  PubMed  CAS  Google Scholar 

  17. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  18. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 18, 399–404.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, J. B., Lee, J. E., Park, J. H., et al. (2005). Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biology of Reproduction, 72, 42–49.

    Article  PubMed  CAS  Google Scholar 

  20. Talbot, N. C., Powell, A. M., & Rexroad Jr., C. E. (1995). In vitro pluripotency of epiblasts derived from bovine blastocysts. Molecular Reproduction and Development, 42, 35–52.

    Article  PubMed  CAS  Google Scholar 

  21. Notarianni, E., Laurie, S., Moor, R. M., & Evans, M. J. (1990). Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. Journal of Reproduction And Fertility. Supplement, 41, 51–56.

    PubMed  CAS  Google Scholar 

  22. Notarianni, E., Galli, C., Laurie, S., Moor, R. M., & Evans, M. J. (1991). Derivation of pluripotent, embryonic cell lines from the pig and sheep. Journal of Reproduction And Fertility. Supplement, 43, 255–260.

    PubMed  CAS  Google Scholar 

  23. Piedrahita, J. A., Anderson, G. B., & BonDurrant, R. H. (1990a). On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology, 34, 879–901.

    Article  PubMed  CAS  Google Scholar 

  24. Piedrahita, J. A., Anderson, G. B., & BonDurrant, R. H. (1990b). Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology, 34, 865–877.

    Article  PubMed  CAS  Google Scholar 

  25. Strojek, R., Reed, M. A., Hoover, J. L., & Wagner, T. E. (1990). A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology, 33, 901–913.

    Article  PubMed  CAS  Google Scholar 

  26. Hochereau-de Reviers, M. T., & Perreau, C. (1993). In vitro culture of embryonic disc cells from porcine blastocysts. Reproduction Nutrition Development, 33, 475–483.

    Article  CAS  Google Scholar 

  27. Wheeler, M. B. (1994). Development and validation of swine embryonic stem cells: a review. Reproduction, Fertility And Development, 6, 563–568.

    Article  CAS  Google Scholar 

  28. Chen, L. R., Shiue, Y. L., Bertolini, L., Medrano, J. F., BonDurant, R. H., & Anderson, G. B. (1999). Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 52, 195–212.

    Article  PubMed  CAS  Google Scholar 

  29. Li, M., Zhang, D., Hou, Y., Jiao, L., Zheng, X., & Wang, W. H. (2003). Isolation and culture of embryonic stem cells from porcine blastocysts. Molecular Reproduction and Development, 65, 429–434.

    Article  PubMed  CAS  Google Scholar 

  30. Li, M., Ma, W., Hou, Y., Sun, X. F., Sun, Q. Y., & Wang, W. H. (2004a). Improved isolation and culture of embryonic stem cells from Chinese miniature pig. Journal of Reproduction and Development, 50, 237–244.

    Article  PubMed  Google Scholar 

  31. Li, M., Li, Y. H., Hou, Y., Sun, X. F., Sun, Q., & Wang, W. H. (2004b). Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote, 12, 43–48.

    Article  PubMed  Google Scholar 

  32. Shim, H., Gutierrez-Adan, A., Chen, L. R., BonDurant, R. H., Behboodi, E., & Anderson, G. B. (1997). Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biology of Reproduction, 57, 1089–1095.

    Article  PubMed  CAS  Google Scholar 

  33. Mueller, S., Prelle, K., Rieger, N., et al. (1999). Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Molecular Reproduction and Development, 54, 244–254.

    Article  PubMed  CAS  Google Scholar 

  34. Tsung, H. C., Du, Z. W., Rui, R., et al. (2003). The culture and establishment of embryonic germ (EG) cell lines from Chinese mini swine. Cell Research, 13, 195–202.

    Article  PubMed  CAS  Google Scholar 

  35. Rui, R., Shim, H., Moyer, A. L., et al. (2004). Attempts to enhance production of porcine chimeras from embryonic germ cells and preimplantation embryos. Theriogenology, 61, 1225–1235.

    Article  PubMed  Google Scholar 

  36. Sims, M., & First, N. L. (1994). Production of calves by transfer of nuclei from cultured inner cell mass cells. Proceedings of the National Academy of Sciences of the United States of America, 91, 6143–6147.

    Article  PubMed  CAS  Google Scholar 

  37. First, N. L., Sims, M. M., Park, S. P., & Kent-First, M. J. (1994). Systems for production of calves from cultured bovine embryonic cells. Reproduction, Fertility and Development, 6, 553–562.

    Article  CAS  Google Scholar 

  38. Cibelli, J. B., Stice, S. L., Golueke, P. J., et al. (1998). Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nature Biotechnology, 16, 642–646.

    Article  PubMed  CAS  Google Scholar 

  39. Iwasaki, S., Campbell, K. H., Galli, C., & Akiyama, K. (2000). Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biology of Reproduction, 62, 470–475.

    Article  PubMed  CAS  Google Scholar 

  40. Mitalipova, M., Beyhan, Z., & First, N. L. (2001). Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning, 3, 59–67.

    Article  PubMed  CAS  Google Scholar 

  41. Saito, S., Sawai, K., Ugai, H., et al. (2003). Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochemical and Biophysical Research Communications, 309, 104–113.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, G., Zhang, H., Zhao, Y., et al. (2005). Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochemical and Biophysical Research Communications, 330, 934–942.

    Article  PubMed  CAS  Google Scholar 

  43. Keefer, C. L., Karatzas, C. N., Lazaris-Karatzas, A., Gagnon, I., Poulin, , & Downey, B. R. (1996). Isolation and maintenance of putative embryonic stem cells derived from Nigerian Dwarf goat embryos. Biology of Reproduction, 54, abstr. 462.

    Google Scholar 

  44. Kuhholzer, B., Baguisi, A., & Overstrom, E. W. (2000). Long-term culture and characterization of goat primordial germ cells. Theriogenology, 53, 1071–1079.

    Article  PubMed  CAS  Google Scholar 

  45. Saito, S., Ugai, H., Sawai, K., et al. (2002). Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Letters, 531, 389–396.

    Article  PubMed  CAS  Google Scholar 

  46. Li, X., Zhou, S. G., Imreh, M. P., Ahrlund-Richter, L., & Allen, W. R. (2006). Horse embryonic stem cell lines from the proliferation of inner cell mass cells. Stem Cells and Development, 15, 523–531.

    Article  PubMed  CAS  Google Scholar 

  47. Flechon, J. E., Laurie, S., & Notarianni, E. (1995). Isolation and characterization of a feeder-dependent, porcine trophectoderm cell line obtained from a 9-day blastocyst. Placenta, 16, 643–658.

    Article  PubMed  CAS  Google Scholar 

  48. Talbot, N. C., Caperna, T. J., Edwards, J. L., Garrett, W., Wells, K. D., & Ealy, A. D. (2000). Bovine blastocyst-derived trophectoderm and endoderm cell cultures: interferon tau and transferrin expression as respective in vitro markers. Biology of Reproduction, 62, 235–247.

    Article  PubMed  CAS  Google Scholar 

  49. Shimada, A., Nakano, H., Takahashi, T., Imai, K., & Hashizume, K. (2001). Isolation and characterization of a bovine blastocyst-derived trophoblastic cell line, BT-1: development of a culture system in the absence of feeder cell. Placenta, 22, 652–662.

    Article  PubMed  CAS  Google Scholar 

  50. Miyazaki, H., Imai, M., Hirayama, T., et al. (2002). Establishment of feeder-independent cloned caprine trophoblast cell line which expresses placental lactogen and interferon tau. Placenta, 23, 613–630.

    Article  PubMed  CAS  Google Scholar 

  51. Talbot, N. C., Caperna, T. J., Powell, A. M., Ealy, A. D., Blomberg, L. A., & Garrett, W. M. (2005). Isolation and characterization of a bovine visceral endoderm cell line derived from a parthenogenetic blastocyst. In Vitro Cellular and Developmental Biology Animal, 41, 130–141.

    Article  PubMed  CAS  Google Scholar 

  52. Talbot, N. C., Paape, M., Sohn, E. J., & Garrett, W. M. (2004). Macrophage population dynamics within fetal mouse fibroblast cultures derived from C57BL/6, CD-1, CF-1 mice and interleukin-6 and granulocyte colony stimulating factor knockout mice. In Vitro Cellular and Developmental Biology Animal, 40, 196–210.

    Article  PubMed  Google Scholar 

  53. Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., & Hearn, J. P. (1996). Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biology Of Reproduction, 55, 254–259.

    Article  PubMed  CAS  Google Scholar 

  54. Kato, Y., Tani, T., & Tsunoda, Y. (2000). Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. Journal of Reproduction and Fertility, 120, 231–237.

    Article  PubMed  CAS  Google Scholar 

  55. Wakayama, T., & Yanagimachi, R. (2001). Mouse cloning with nucleus donor cells of different age and type. Molecular Reproduction and Development, 58, 376–383.

    Article  PubMed  CAS  Google Scholar 

  56. Tsunoda, Y., & Kato, Y. (1998). Not only inner cell mass cell nuclei but also trophectoderm nuclei of mouse blastocysts have a developmental totipotency. Journal of Reproduction and Fertility, 113, 181–194.

    Article  PubMed  CAS  Google Scholar 

  57. Suda, Y., Suzuki, M., Ikawa, Y., & Aizawa, S. (1987). Mouse embryonic stem cells exhibit indefinite proliferative potential. Journal of Cellular Physiology, 133, 197–201.

    Article  PubMed  CAS  Google Scholar 

  58. Amit, M., Carpenter, M. K., Inokuma, M. S., et al. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developments in Biologicals, 227, 271–278.

    Article  CAS  Google Scholar 

  59. Freshney, R. I. (1994). Culture of animal cells (3rd ed.). New York: Wiley-Liss.

    Google Scholar 

  60. Hubner, K., Fuhrmann, G., Christenson, L. K., et al. (2003). Derivation of oocytes from mouse embryonic stem cells. Science, 300, 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  61. Geijsen, N., Horoschak, M., Kim, K., Gribnau, J., Eggan, K., & Daley, G. Q. (2004). Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 427, 148–154.

    Article  PubMed  CAS  Google Scholar 

  62. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372–376.

    Article  PubMed  CAS  Google Scholar 

  63. Tolkunova, E., Cavaleri, F., Eckardt, S., et al. (2006). The caudal-related protein Cdx2 promotes trophoblast differentiation of mouse ES cells. Stem Cells, 24, 139–144.

    Article  PubMed  CAS  Google Scholar 

  64. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., & Roder, J. C. (1993). Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 90, 8424–8428.

    Article  PubMed  CAS  Google Scholar 

  65. Snodgrass, H. R., Schmitt, R. M., & Bruyns, E. (1992). Embryonic stem cells and in vitro hematopoiesis. Journal of Cellular Biochemistry, 49, 225–230.

    Article  PubMed  CAS  Google Scholar 

  66. Brons, I. G., Smithers, L. E., Trotter, M. W., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448, 191–195.

    Article  PubMed  CAS  Google Scholar 

  67. Tesar, P. J., Chenoweth, J. G., Brook, F. A., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–199.

    Article  PubMed  CAS  Google Scholar 

  68. Lovell-Badge, R. (2007). Many ways to pluripotency. Nature Biotechnology, 25, 1114–1116.

    Article  PubMed  CAS  Google Scholar 

  69. Smith, J. R., & Whitney, R. G. (1980). Intraclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging. Science, 207, 82–84.

    Article  PubMed  CAS  Google Scholar 

  70. Talbot, N. C., Rexroad Jr., C. E., Pursel, V. G., & Powell, A. M. (1993b). Alkaline phosphatase staining of pig and sheep epiblast cells in culture. Molecular Reproduction and Development, 36, 139–147.

    Article  PubMed  CAS  Google Scholar 

  71. Blomberg, L. A., Schreier, L. L., & Talbot, N. C. (2008). Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Molecular Reproduction and Development, 75(3), 450–463.

    Article  CAS  PubMed  Google Scholar 

  72. Thomson, J. A., & Marshall, V. S. (1998). Primate embryonic stem cells. In R. A. Pedersen, & G. P. Schatten (Eds.), Current topics in developmental biology (pp. 133–165). San Diego, CA: Academic.

    Google Scholar 

  73. Hogan, B., Beddington, R., Constantini, F., & Lacy, E. (1994). Manipulating the mouse embryo p. 259. Plainview, NY: Cold Spring Harbor Laboratory and p. 409.

    Google Scholar 

  74. Eshkind, L., Tian, Q., Schmidt, A., Franke, W. W., Windoffer, R., & Leube, R. E. (2002). Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. European Journal Of Cell Biology, 81, 592–598.

    Article  PubMed  CAS  Google Scholar 

  75. Park, S. H., Park, S. H., Kook, M. C., Kim, E. Y., Park, S., & Lim, J. H. (2004). Ultrastructure of human embryonic stem cells and spontaneous and retinoic acid-induced differentiating cells. Ultrastructural Pathology, 28, 229–238.

    Article  PubMed  Google Scholar 

  76. Nichols, J., Zevnik, B., Anastassiadis, K., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379–391.

    Article  PubMed  CAS  Google Scholar 

  77. Matsuda, T., Nakamura, T., Nakao, K., Arai, T., Katsuki, M., & Heike, T. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO Journal, 18, 4261–4269.

    Article  PubMed  CAS  Google Scholar 

  78. Ying, Q. L., Nichols, J., Chambers, I., & Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115, 281–292.

    Article  PubMed  CAS  Google Scholar 

  79. Pauling, N. R., Wheadon, H., Bone, H. K., & Welham, M. J. (2004). Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. Journal Of Biological Chemistry, 279, 48063–48070.

    Article  CAS  Google Scholar 

  80. Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., & Dalton, S. (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 132, 885–896.

    Article  PubMed  CAS  Google Scholar 

  81. Henderson, J. K., Draper, J. S., Baillie, H. S., et al. (2002). Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells, 20, 329–337.

    Article  PubMed  CAS  Google Scholar 

  82. Nichols, J., Davidson, D., Taga, T., Yoshida, K., Chambers, I., & Smith, A. (1996). Complementary tissue-specific expression of LIF and LIF-receptor mRNAs in early mouse embryogenesis. Mechanisms of Development, 57, 123–131.

    Article  PubMed  CAS  Google Scholar 

  83. Geisert, R. D., Brookbank, J. W., Roberts, R. M., & Bazer, F. W. (1982). Establishment of pregnancy in the pig. II. Cellular remodeling of the porcine blastocyst during elongation on day 12 of pregnancy. Biology of Reproduction, 27, 941–955.

    Article  PubMed  CAS  Google Scholar 

  84. Betteridge, K. J., & Fléchon, J. E. (1988). The anatomy and physiology of pre-attachment bovine embryos. Theriogenology, 29, 155–187.

    Article  Google Scholar 

  85. Gallicano, G. I. (2001). Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Frontiers in Bioscience, 6, D1089–D1108.

    Article  PubMed  CAS  Google Scholar 

  86. Hue, I., Renard, J. P., & Viebahn, C. (2001). Brachyury is expressed in gastrulating bovine embryos well ahead of implantation. Development, Genes and Evolution, 211, 157–159.

    Article  CAS  Google Scholar 

  87. Fléchon, J. E., Degrouard, J., & Fléchon, B. (2004). Gastrulation events in the prestreak pig embryo: ultrastructure and cell markers. Genesis, 38, 13–25.

    Article  PubMed  Google Scholar 

  88. Blomberg, L. A., Garrett, W. M., Guillomot, M., et al. (2006). Transcriptome profiling of the tubular porcine conceptus identifies the differential regulation of growth and developmentally associated genes. Molecular Reproduction and Development, 73(12), 1491–1502.

    Article  CAS  Google Scholar 

  89. Keefer, C. L., Pant, D., Blomberg, L., & Talbot, N. C. (2007). Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Animal Reproduction Science, 98, 147–168.

    Article  PubMed  CAS  Google Scholar 

  90. Furue, M., Okamoto, T., Hayashi, Y., et al. (2005). Leukemia inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem cells in a serum-free medium without feeder cells. In Vitro Cellular and Developmental Biology Animal, 41, 19–28.

    Article  PubMed  CAS  Google Scholar 

  91. Ludwig, T. E., Levenstein, M. E., Jones, J. M., et al. (2006). Derivation of human embryonic stem cells in defined conditions. Nature Biotechnology, 24, 185–187.

    Article  PubMed  CAS  Google Scholar 

  92. Starr, R., Novak, U., Willson, T. A., et al. (1997). Distinct roles for leukemia inhibitory factor receptor alpha-chain and gp130 in cell type-specific signal transduction. Journal of Biological Chemistry, 272, 19982–19986.

    Article  PubMed  CAS  Google Scholar 

  93. Yoshida, K., Chambers, I., Nichols, J., et al. (1994). Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mechanisms of Development, 45, 163–171.

    Article  PubMed  CAS  Google Scholar 

  94. Zhang, J. G., Owczarek, C. M., Ward, L. D., et al. (1997). Evidence for the formation of a heterotrimeric complex of leukaemia inhibitory factor with its receptor subunits in solution. Biochemical Journal, 325, 693–700.

    PubMed  CAS  Google Scholar 

  95. Akagi, T., Usuda, M., Matsuda, T., et al. (2005). Identification of zpf-57 as a downstream molecule of STAT3 and Oct-3/4 in embryonic stem cells. Biochemical and Biophysical Research Communications, 331, 23–30.

    Article  PubMed  CAS  Google Scholar 

  96. Li, Y., McClintock, J., Zhong, , Edenberg, H. J., Yoder, M. C., & Chan, R. J. (2005). Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood, 105, 635–637.

    Article  PubMed  CAS  Google Scholar 

  97. Jiang, J., Chan, Y. S., Loh, Y. H., et al. (2008). A core klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biology, 10, 353–360.

    Article  PubMed  CAS  Google Scholar 

  98. Smith, A. G., Heath, J. K., Donaldson, D. D., et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 336, 688–690.

    Article  PubMed  CAS  Google Scholar 

  99. Niwa, H., Burdon, T., Chambers, I., & Smith, A. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes and Development, 12, 2048–2060.

    Article  PubMed  CAS  Google Scholar 

  100. Ware, C. B., Horowitz, M. C., Renshaw, B. R., et al. (1995). Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development, 121, 1283–1299.

    PubMed  CAS  Google Scholar 

  101. Sendtner, M., Götz, R., Holtmann, B., Escary, J. L., et al. (1996). Cryptic physiological trophic support of motoneurons by LIF revealed by double gene targeting of CNTF and LIF. Current Biology, 6, 686–694.

    Article  PubMed  CAS  Google Scholar 

  102. Wånggren, K., Lalitkumar, P. G., Hambiliki, F., Ståbi, B., Gemzell-Danielsson, K., & Stavreus-Evers, A. (2007). Leukaemia inhibitory factor receptor and gp130 in the human fallopian tube and endometrium before and after mifepristone treatment and in the human preimplantation embryo. Molecular Human Reproduction, 13, 391–397.

    Article  PubMed  CAS  Google Scholar 

  103. Dahéron, L., Opitz, S. L., Zaehres, H., et al. (2004). LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells, 22, 770–778.

    Article  PubMed  Google Scholar 

  104. Humphrey, R. K., Beattie, G. M., Lopez, A. D., et al. (2004). Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells, 22, 522–530.

    Article  PubMed  CAS  Google Scholar 

  105. Sumi, T., Fujimoto, Y., Nakatsuji, N., & Suemori, H. (2004). STAT3 is dispensable for maintenance of self-renewal in nonhuman primate embryonic stem cells. Stem Cells, 22, 861–872.

    Article  PubMed  CAS  Google Scholar 

  106. Ginis, I., Luo, Y., Miura, T., et al. (2004). Differences between human and mouse embryonic stem cells. Developments in Biologicals, 269, 360–380.

    Article  CAS  Google Scholar 

  107. Wei, C. L., Miura, T., Robson, P., et al. (2005). Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells, 23, 166–185.

    Article  PubMed  CAS  Google Scholar 

  108. Vackova, I., Ungrova, A., & Lopes, F. (2007). Putative embryonic stem cell lines from pig embryos. Journal of Reproduction and Development, 53, 1137–1149.

    Article  PubMed  Google Scholar 

  109. Eckert, J., & Niemann, H. (1998). mRNA expression of leukaemia inhibitory factor (LIF) and its receptor subunits glycoprotein 130 and LIF-receptor-beta in bovine embryos derived in vitro or in vivo. Molecular Human Reproduction, 4, 957–965.

    Article  PubMed  CAS  Google Scholar 

  110. Rizos, D., Gutiérrez-Adán, A., Pérez-Garnelo, S., De La Fuente, J., Boland, M. P., & Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biology of Reproduction, 68, 236–243.

    Article  PubMed  CAS  Google Scholar 

  111. Pucéat, M. (2007). TGFb in the differentiation of embryonic stem cells. Cardiovascular Research, 74, 256–261.

    Article  PubMed  CAS  Google Scholar 

  112. Attisano, L., & Wrana, J. L. (2007). Signal transduction by the TGF-b superfamily. Science, 296, 1646–1647.

    Article  Google Scholar 

  113. Besser, D. (2004). Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. Journal of Biological Chemistry, 279, 45076–45084.

    Article  PubMed  CAS  Google Scholar 

  114. James, D., Levine, A. J., Besser, D., & Hemmati-Brivanlou, A. (2005). TGF(beta)/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132, 1273–1282.

    Article  PubMed  CAS  Google Scholar 

  115. Xiao, L., Yuan, X., & Sharkis, S. J. (2006). Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells, 24, 1476–1486.

    Article  PubMed  CAS  Google Scholar 

  116. Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., & Thomson, J. A. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Natural Methods, 2, 185–190.

    Article  CAS  Google Scholar 

  117. Wang, L., Schulz, T. C., Sherrer, E. S., et al. (2007). Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood, 110, 4111–4119.

    Article  PubMed  CAS  Google Scholar 

  118. Bendall, S. C., Stewart, M. H., Menendez, P., et al. (2007). IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 448, 1015–1023.

    Article  PubMed  CAS  Google Scholar 

  119. Katoh, M., & Katoh, M. (2007). WNT signaling pathway and stem cell signaling network. Clinical Cancer Research, 12, 4042–4045.

    Article  CAS  Google Scholar 

  120. Nusse, R. (2008). Wnt signaling and stem cell control. Cell Research, 18(5), 523 PMID, 18392048.

    Article  PubMed  CAS  Google Scholar 

  121. Pereira, L., Yi, F., & Merrill, B. J. (2006). Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Molecular And Cellular Biology, 26, 7479–7491.

    Article  PubMed  CAS  Google Scholar 

  122. He, T. C., Sparks, A. B., Rago, C., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281, 1509–1512.

    Article  PubMed  CAS  Google Scholar 

  123. Prowse, A. B. J., McQuade, L. R., Bryanot, K. J., Marcal, H., & Gray, P. P. (2007). Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. Journal of Proteome Research, 6, 3796–3807.

    Article  PubMed  CAS  Google Scholar 

  124. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10, 55–63.

    Article  PubMed  CAS  Google Scholar 

  125. Anton, R., Kestler, , & Kuhl, M. (2007). b-catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Letters, 581, 5247–5254.

    Article  PubMed  CAS  Google Scholar 

  126. Dravid, G., Ye, Z., Hammond, H., et al. (2005). Defining the role of Wnt/b-catenin signaling in the survival, proliferation and self-renewal of human embryonic stem cells. Stem Cells, 23, 1489–1501.

    Article  PubMed  CAS  Google Scholar 

  127. Rodda, D. J., Chew, J. L., Lim, L. H., et al. (2005). Transcriptional regulation of Nanog by OCT4 and SOX2. Journal of Biological Chemistry, 280, 24731–24737.

    Article  PubMed  CAS  Google Scholar 

  128. Boyer, L. A., Mathur, D., & Jaenisch, R. (2006a). Molecular control of pluripotency. Current Opinion in Genetics and Development, 16, 455–462.

    Article  PubMed  CAS  Google Scholar 

  129. Loh, Y. H., Wu, Q., Chew, J. L., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38, 431–440.

    Article  PubMed  CAS  Google Scholar 

  130. Babaie, Y., Herwig, R., Greber, B., et al. (2007). Analysis of OCT4 dependent transcriptional networks regulating self renewal and pluripotency in human embryonic stems cells. Stem Cells, 25(2), 500–510.

    Article  PubMed  CAS  Google Scholar 

  131. Ivanova, N., Dobrin, R., Lu, R., et al. (2006). Dissecting self-renewal in stem cells with RNA interference. Nature, 442, 533–538.

    Article  PubMed  CAS  Google Scholar 

  132. Cowan, C. A., Atienza, J., Melton, D. A., & Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 309, 1369–1373.

    Article  PubMed  CAS  Google Scholar 

  133. Azuara, V., Perry, P., Sauer, S., Spivakov, M., et al. (2006). Chromatin signatures of pluripotent cell lines. Nature Cell Biology, 8, 532–538.

    Article  PubMed  CAS  Google Scholar 

  134. Meshorer, E., Yellajoshula, D., George, E., Scambler, P. J., Brown, D. T., & Misteli, T. (2006). Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Development Cell, 10, 105–116.

    Article  CAS  Google Scholar 

  135. Wernig, M., Meissner, A., Foreman, R., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318–324.

    Article  PubMed  CAS  Google Scholar 

  136. Mikkelsen, T. S., Ku, M., Jaffe, D. B., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448, 553–560.

    Article  PubMed  CAS  Google Scholar 

  137. Ringrose, L., & Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annual Review of Genetics, 38, 413–443.

    Article  PubMed  CAS  Google Scholar 

  138. Schuettengruber, B., Chourrout, D., Vevoort, M., Leblanc, B., & Cavalli, G. (2007). Genome regulation by Polycomb and Trithorax proteins. Cell, 128, 735–745.

    Article  PubMed  CAS  Google Scholar 

  139. Trojer, P., & Reinberg, D. (2006). Histone lysine demethylases and their impact on epigenetics. Cell, 125, 213–217.

    Article  PubMed  CAS  Google Scholar 

  140. Boyer, L. A., Plath, K., Zeitlinger, J., et al. (2006b). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441, 349–353.

    Article  PubMed  CAS  Google Scholar 

  141. Lee, T. I., Jenner, R. G., Boyer, L. A., et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125, 301–313.

    Article  PubMed  CAS  Google Scholar 

  142. Cao, R., & Zhang, Y. (2004). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Current Opinion in Genetics and Development, 14, 155–164.

    Article  PubMed  CAS  Google Scholar 

  143. Wysocka, J., Swigut, T., Milne, T. A., et al. (2005). WDR5 associates with histone He methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell, 121, 859–872.

    Article  PubMed  CAS  Google Scholar 

  144. Francis, N. J., Kinston, R. E., & Woodcock, C. L. (2004). Chromatin compaction by a Polycomb group protein complex. Science, 306, 1574–1577.

    Article  PubMed  CAS  Google Scholar 

  145. Kim, T. H., Barrera, L. O., Zheng, M., et al. (2005). A high-resolution map of active promoters in the human genome. Nature, 436, 876–880.

    Article  PubMed  CAS  Google Scholar 

  146. Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H., & Helin, K. (2006). Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Development, 20, 1123–1136.

    Article  PubMed  CAS  Google Scholar 

  147. O’Carroll, D., Erhardt, S., Pagani, M., Barton, S. C., Surani, M. A., & Jenuwein, T. (2001). The Polycomb-group gene Ezh2 is required for early mouse development. Molecular and Cellular Biology, 21, 4330–4336.

    Article  PubMed  CAS  Google Scholar 

  148. Collas, P., Noer, A., & Timoskainen, S. (2007). Programming the genome in embryonic and somatic stem cells. Journal of Cellular and Molecular Medicine, 11, 602–620.

    Article  PubMed  CAS  Google Scholar 

  149. Jackson, M., Kassowska, A., Gilbert, N., et al. (2004). Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Molecular and Cellular Biology, 24, 8862–8871.

    Article  PubMed  CAS  Google Scholar 

  150. Bibikova, M., Chudin, E., Wu, B., et al. (2006). Human embryonic stem cells have a unique epigenetic signature. Genome Research, 16, 1075–1083.

    Article  PubMed  CAS  Google Scholar 

  151. Bernstein, B. E., Mikkelsen, T. S., Xie, X., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.

    Article  PubMed  CAS  Google Scholar 

  152. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  153. Stadtfeld, M., Maherali, N., Breault, D. T., & Hoechedlinger, K. (2008). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2, 1–11.

    Article  CAS  Google Scholar 

  154. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  PubMed  CAS  Google Scholar 

  155. Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26, 101–106.

    Article  PubMed  CAS  Google Scholar 

  156. Wernig, M., Meissner, A., Cassady, J. P., & Jaenisch, (2008). C-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2, 10–12.

    Article  PubMed  CAS  Google Scholar 

  157. McWhir, J., Schnieke, A. E., Ansell, R., et al. (1996). Selective ablation of differentiated cells permits isolation of embryonic stem cell lines from murine embryos with a non-permissive genetic background. Nature Genetics, 14, 223–226.

    Article  PubMed  CAS  Google Scholar 

  158. Nichols, J., Chambers, I., Taga, T., & Smith, A. (2001). Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development, 128, 2333–2339.

    PubMed  CAS  Google Scholar 

  159. Jaenisch, R., & Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 132, 567–582.

    Article  PubMed  CAS  Google Scholar 

  160. Talbot, N. C., Blomberg, L. A., Mahmood, A., Caperna, T. J., & Garrett, W. M. (2007). Isolation and characterization of porcine visceral endoderm cell lines derived from in vivo 11-day blastocysts. In Vitro Cellular And Developmental Biology Animal, 43, 72–86.

    Article  PubMed  CAS  Google Scholar 

  161. van Eijk, M. J., van Rooijen, M. A., Modina, S., et al. (1999). Molecular cloning, genetic mapping, and developmental expression of bovine POU5F1. Biology of Reproduction, 60, 1093–1103.

    Article  PubMed  Google Scholar 

  162. Kirchhof, N., Carnwath, J. W., Lemme, E., Anastassiadis, K., Scholer, H., & Niemann, H. (2000). Expression pattern of Oct-4 in preimplantation embryos of different species. Biology of Reproduction, 63, 1698–1705.

    Article  PubMed  CAS  Google Scholar 

  163. Gibson-D’Ambrosio, R. E., Samuel, M., Chang, C. C., Trosko, J. E., & D’Ambrosio, S. M. (1987). Characteristics of long-term human epithelial cell cultures derived from normal human fetal kidney. In Vitro Cellular and Developmental Biology, 23, 279–287.

    Article  PubMed  CAS  Google Scholar 

  164. Moore, K., & Piedrahita, J. A. (1997). The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cellular and Developmental Biology Animal, 33, 62–71.

    Article  PubMed  CAS  Google Scholar 

  165. Piedrahita, J. A., Weaks, R., Petrescu, A., Shrode, T. W., Derr, J. N., & Womack, J. E. (1997). Genetic characterization of the bovine leukaemia inhibitory factor (LIF) gene: isolation and sequencing, chromosome assignment and microsatellite analysis. Animal Genetics, 28, 14–20.

    Article  PubMed  CAS  Google Scholar 

  166. Spotter, A., Drogemuller, C., Kuiper, H., Brenig, B., Leeb, T., & Distl, O. (2001). Molecular characterization and chromosome assignment of the porcine gene for leukemia inhibitory factor LIF. Cytogenetics and Cell Genetics, 93, 87–90.

    Article  PubMed  CAS  Google Scholar 

  167. Ezashi, T., Das, P., & Roberts, R. M. (2005). Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 4783–4788.

    Article  PubMed  CAS  Google Scholar 

  168. Peura, T., Bosman, A., & Stojanov, T. (2005). Improved growth of human embryonic stem cells in a reduced oxygen atmosphere. Reproduction, Fertility and Development, 17, 238–239.

    Article  Google Scholar 

  169. Ording, C. J., Josephson, H. K., & Auerbach, J. M. (2006). Effects of reduced oxygen tension on HUES-7 human embryonic stem cells. ATCC Connection, 25, 1–5.

    Google Scholar 

  170. Taylor, W. G., & Camalier, R. F. (1982). Modulation of epithelial cell proliferation in culture by dissolved oxygen. Journal of Cellular Physiology, 111, 21–27.

    Article  PubMed  CAS  Google Scholar 

  171. Zagorski, Z., Grossler, B., & Naumann, G. O. (1989). Effect of low oxygen tension on the growth of bovine corneal endothelial cells in vitro. Ophthalmic Research, 21, 440–442.

    Article  PubMed  CAS  Google Scholar 

  172. Akeo, K., Nagaski, K., Tanaka, Y., Curran, S. A., & Dorey, C. K. (1992). Comparison of effects of oxygen and antioxidative enzymes on cell growth between retinal pigment epithelial cells and vascular endothelial cells in vitro. Opthalmic Research, 24, 357–364.

    CAS  Google Scholar 

  173. Chang, M. C. (1952). Development of bovine blastocyst with a note on implantation. Anatomical Record, 113, 143–161.

    Article  PubMed  CAS  Google Scholar 

  174. Stroband, H. W. J., Taverne, N., & Bogaard, M. V. D. (1984). The pig blastocyst: its ultrastructure and the uptake of protein macromolecules. Cell Tissue Research, 235, 347–356.

    Article  PubMed  CAS  Google Scholar 

  175. Guillomot, M., Turbe, A., Hue, I., & Renard, J. P. (2004). Staging of ovine embryos and expression of the T-box genes Brachyury and Eomesodermin around gastrulation. Reproduction, 127, 491–501.

    Article  PubMed  CAS  Google Scholar 

  176. Park, J. H., Kim, S. J., Oh, E. J., et al. (2003). Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biology of Reproduction, 69, 2007–2014.

    Article  PubMed  CAS  Google Scholar 

  177. Talbot, N. C., & Paape, M. J. (1996). Continuous culture of pig tissue-derived macrophages. Methods in Cell Science, 18, 315–327.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. W.M. Garrett for his kind help in preparing photographic figures and Dr. David Guthrie for his review and helpful editorial and scientific suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Ann Blomberg.

Additional information

Mention of a trade name, proprietary product or vendor does not constitute a guarantee or warranty of the product by USDA or imply its approval to the exclusion of other suitable products or vendors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbot, N.C., Blomberg, L.A. The Pursuit of ES Cell Lines of Domesticated Ungulates. Stem Cell Rev 4, 235–254 (2008). https://doi.org/10.1007/s12015-008-9026-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9026-0

Keywords

Navigation