Skip to main content

Advertisement

Log in

Sequential equality-constrained optimization for nonlinear programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A novel idea is proposed for solving optimization problems with equality constraints and bounds on the variables. In the spirit of sequential quadratic programming and sequential linearly-constrained programming, the new proposed approach approximately solves, at each iteration, an equality-constrained optimization problem. The bound constraints are handled in outer iterations by means of an augmented Lagrangian scheme. Global convergence of the method follows from well-established nonlinear programming theories. Numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The inertia is freely computed as an outcome of the matrix factorization performed by the Harwell subroutine MA57. Given an indefinite sparse symmetric matrix A, subroutine MA57 computes the factorization given by \(PAP^T = LDL^T\), where P is a permutation matrix, L is lower triangular, and D is block diagonal with \(1 \times 1\) or \(2 \times 2\) diagonal blocks. By the Sylvester law of inertia, matrices A and D have the same inertia and computing the inertia of D is trivial (it is necessary to check the sign or to compute the eigenvalues of its \(1 \times 1\) or \(2 \times 2\) diagonal blocks).

  2. When analyzing the output of Algencan, the reason that motivates using a strict criterion that considers that the primal active variables are those exactly equal to zero is that the subproblems solved by Algencan preserve non-negative of the primal variables all along the calculations. Moreover, the searches used in the Algencan subproblems’ solver make it almost impossible the existence of positive primal variables with very small values. On the other hand, in SECO, the bound constraints may be violated (hopefully slightly) or variables may be strictly positive with tiny values, so that tolerances are necessary to declare almost feasibility and activity.

References

  1. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60, 627–641 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: A relaxed constant positive linear dependence constraint qualification and applications. Math, Program. 135, 255–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22, 1109–1135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.S.: A cone-continuity constraint qualification and algorithmic consequences. SIAM J. Optim. 26, 96–110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andreani, R., Martínez, J.M., Schuverdt, M.L.: On the relation between constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125, 473–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Banihashemi, N., Kaya, C.Y.: Inexact restoration for Euler discretization of box-constrained optimal control problems. J. Optim. Theory Appl. 156, 726–760 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birgin, E.G., Martínez, J.M.: Improving ultimate convergence of an augmented Lagrangian method. Optim. Methods Softw. 23, 177–195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. SIAM, Philadelphia (2014)

    Book  MATH  Google Scholar 

  10. Birgin, E.G., Castelani, E.V., Martinez, A.L.M., Martínez, J.M.: Outer trust-region method for constrained optimization. J. Optim. Theory Appl. 150, 142–155 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bueno, L.F., Haeser, G., Martínez, J.M.: A flexible inexact restoration method for constrained optimization. J. Optim. Theory Appl. 165, 188–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castelani, E.V., Martinez, A.L., Martínez, J.M., Svaiter, B.F.: Addressing the greediness phenomenon in nonlinear programming by means of proximal augmented Lagrangians. Comput. Optim. Appl. 46, 229–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Conn, A.R., Gould, N.I.M., Toint, P.L.: Lancelot: A Fortran Package for Large Scale Nonlinear Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  14. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fischer, A., Friedlander, A.: A new line search inexact restoration approach for nonlinear programming. Comput. Optim. Appl. 46, 333–346 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (2000)

    Book  MATH  Google Scholar 

  17. Francisco, J.B., Martínez, J.M., Martínez, L., Pisnitchenko, F.: Inexact Restoration method for minimization problems arising in electronic structure calculations. Comput. Optim. Appl. 50, 555–590 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkings University Press, Baltimore (1996)

    MATH  Google Scholar 

  19. Gonzaga, C.C., Karas, E.W., Vanti, M.: A globally convergent filter method for nonlinear programming. SIAM J. Optim. 14, 646–669 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gould, N.I.M., Orban, D., Toint, PhL: CUTEst: a constrained and unconstrained testing environment with safe threads for mathematical optimization. Comput. Optim. Appl. 60, 545–557 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. HSL: A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk (2013)

  22. Karas, E.W., Gonzaga, C.C., Ribeiro, A.A.: Local convergence of filter methods for equality constrained non-linear programming. Optimization 59, 1153–1171 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karas, E.W., Pilotta, E.A., Ribeiro, A.A.: Numerical comparison of merit function with filter criterion in inexact restoration algorithms using hard-spheres problems. Comput. Optim. Appl. 44, 427–441 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaya, C.Y.: Inexact restoration for Runge-Kutta discretization of optimal control problems. SIAM J. Numer. Anal. 48, 1492–1517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaya, C.Y., Martínez, J.M.: Euler discretization and inexact restoration for optimal control. J. Optim. Theory Appl. 134, 191–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mangasarian, O.L., Fromovitz, S.: The Fritz-John necessary optimality conditions in presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Martínez, J.M.: Inexact-restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming. J. Optim. Theory Appl. 111, 39–58 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martínez, J.M., Pilotta, E.A.: Inexact-restoration algorithms for constrained optimization. J. Optim. Theory Appl. 104, 135–163 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Murtagh, B.A., Saunders, M.A.: Large-scale linearly constrained optimization. Math. Program. 14, 41–72 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  31. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Qi, L., Wei, Z.: On the constant linear dependence condition and its application to SQP methods. SIAM J. Optim. 10, 963–981 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by PRONEX-CNPq/FAPERJ E-26/111.449/2010-APQ1, FAPESP (Grants 2010/10133-0, 2013/03447-6, 2013/05475-7, 2013/07375-0, and 2015/02528-8), and CNPq (Grants 309517/2014-1 and 303750/2014-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Birgin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birgin, E.G., Bueno, L.F. & Martínez, J.M. Sequential equality-constrained optimization for nonlinear programming. Comput Optim Appl 65, 699–721 (2016). https://doi.org/10.1007/s10589-016-9849-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-016-9849-6

Keywords

Navigation