Skip to main content
Log in

Inexact restoration method for minimization problems arising in electronic structure calculations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

An inexact restoration (IR) approach is presented to solve a matricial optimization problem arising in electronic structure calculations. The solution of the problem is the closed-shell density matrix and the constraints are represented by a Grassmann manifold. One of the mathematical and computational challenges in this area is to develop methods for solving the problem not using eigenvalue calculations and having the possibility of preserving sparsity of iterates and gradients. The inexact restoration approach enjoys local quadratic convergence and global convergence to stationary points and does not use spectral matrix decompositions, so that, in principle, large-scale implementations may preserve sparsity. Numerical experiments show that IR algorithms are competitive with current algorithms for solving closed-shell Hartree-Fock equations and similar mathematical problems, thus being a promising alternative for problems where eigenvalue calculations are a limiting factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cancès, E., Defranceschi, M., Kutzelnigg, W., Le Bris, C., Maday, Y.: Computational quantum chemistry: a primer. In: Le Bris, C., Ciarlet, P.G. (eds.) Handbook of Numerical Analysis, Special Volume, Computational Chemistry, vol. 10. North-Holland, Amsterdam (2003)

    Google Scholar 

  2. Cancès, E., Le Bris, C., Maday, Y.: Méthodes Mathematiques en chimie quantique. Une Introduction. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Hehre, W.J., Radom, L., Schleyer, P.V.R., Pople, J.A.: Ab Initio Molecular Orbital Theory. Wiley, New York (1986)

    Google Scholar 

  4. Helgaker, T., Jorgensen, P., Olsen, J.: Molecular Electronic-Structure Theory. Wiley, New York (2000)

    Google Scholar 

  5. Sánchez-Portal, D., Ordejón, P., Artacho, E., Soler, J.M.: Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65, 453–461 (1997)

    Article  Google Scholar 

  6. Pulay, P.: Convergence acceleration of iterative sequences: the case of SCF iteration. Chem. Phys. Lett. 73, 393–398 (1980)

    Article  Google Scholar 

  7. Cancès, E., Le Bris, C.: Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quantum Chem. 79, 82–90 (2000)

    Article  Google Scholar 

  8. Francisco, J.B., Martínez, J.M., Martínez, L.: Globally convergent trust-region methods for Self-Consistent Field electronic structure calculations. J. Chem. Phys. 121, 10863–10878 (2004)

    Article  Google Scholar 

  9. Francisco, J.B., Martínez, J.M., Martínez, L.: Density-based globally convergent trust-region method for Self-Consistent Field electronic structure calculations. J. Math. Chem. 40, 349–377 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Thögersen, L., Olsen, J., Yeager, D., Jörgensen, P., Salek, P., Helgaker, T.: The trust-region self-consistent field method: Towards a black box optimization in Hartree-Fock and Kohn-Sham theories. J. Chem. Phys. 121, 16–27 (2004)

    Article  Google Scholar 

  11. Thögersen, L., Olsen, J., Köhn, A., Jörgensen, P., Salek, P., Helgaker, T.: The trust-region self-consistent field method in Kohn-Sham density-functional theory. J. Chem. Phys. 123, 1–17 (2005)

    Article  Google Scholar 

  12. Andreani, R., Castro, S.L.C., Chela, J., Friedlander, A., Santos, S.A.: An Inexact-Restoration method for nonlinear bilevel programming problems. Comput. Optim. Appl. 43, 307–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Birgin, E.G., Martínez, J.M.: Local convergence of an Inexact-Restoration method and numerical experiments. J. Optim. Theory Appl. 127, 229–247 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fischer, A., Friedlander, A.: A new line search Inexact Restoration approach for nonlinear programming. Comput. Optim. Appl. (2009). doi:10.1007/s10589-009-9267-0

    Google Scholar 

  15. Gonzaga, C.C., Karas, E.W., Vanti, M.: A globally convergent filter method for nonlinear programming. SIAM J. Optim. 14, 646–669 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaya, C.Y., Martínez, J.M.: Euler discretization and Inexact Restoration for Optimal Control. J. Optim. Theory Appl. 134, 191–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martínez, J.M.: Inexact Restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming. J. Optim. Theory Appl. 111, 39–58 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Martínez, J.M., Pilotta, E.A.: Inexact Restoration algorithms for constrained optimization. J. Optim. Theory Appl. 104, 135–163 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (1987)

    MATH  Google Scholar 

  20. Martínez, J.M., Svaiter, B.F.: A practical optimality condition without constraint qualifications for nonlinear programming. J. Optim. Theory Appl. 118, 117–133 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Janin, R.: Direction derivative of the marginal function in nonlinear programming. Math. Program. Study 21, 127–138 (1984)

    MathSciNet  Google Scholar 

  22. Andreani, R., Martínez, J.M., Schuverdt, M.L.: On the relation between the Constant Positive Linear Dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125, 473–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qi, L., Wei, Z.: On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Optim. 10, 963–981 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Barrault, M., Cancès, E., Hager, W., Le Bris, C.: Multilevel domain decomposition for electronic structure calculations. J. Comput. Phys. 222, 86–109 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cancès, E., Le Bris, C., Lions, P.-L.: Molecular simulation and related topics: some open mathematical problems. Nonlinearity 21, T165–T176 (2008)

    Article  MATH  Google Scholar 

  26. Le Bris, C.: Computational chemistry from the perspective of numerical analysis. Acta Numer. 14, 363–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, C., Meza, J.C., Wang, L.-W.: A constrained optimization algorithm for total energy minimization in electronic structure calculations. J. Comput. Phys. 217, 709–721 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhao, G.: Representing the space of linear programs as the Grassman manifold. Math. Program. 121, 353–386 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pino, R., Scuseria, G.E.: Purification of the first-order density matrix using steepest descent and Newton-Raphson methods. Chem. Phys. Lett. 360, 117–122 (2002)

    Article  Google Scholar 

  30. Mc Weeny, R.: Some recent advances in density matrix theory. Rev. Mod. Phys. 32, 335–369 (1960)

    Article  MathSciNet  Google Scholar 

  31. Rubensson, E.H., Jensen, H.J.: Determination of the chemical potential and HOMO/LUMO orbitals in density purification methods. Chem. Phys. Lett. 432, 591–594 (2006)

    Article  Google Scholar 

  32. Rubensson, E.H., Rudberg, E., Salek, P.: Density matrix purification with rigorous error control. J. Comput. Chem. 26, 1628–1637 (2008)

    Article  Google Scholar 

  33. Palser, A., Manopoulos, D.: Canonical purification of the density matrix in electronic structure theory. Phys. Rev. B 58, 12704–12711 (1998)

    Article  Google Scholar 

  34. Dolan, E.E., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gomes-Ruggiero, M.A., Kozakevich, D.N., Martínez, J.M.: A numerical study on large-scale nonlinear solvers. Comput. Math. Appl. 32, 1–13 (1996)

    Article  MATH  Google Scholar 

  36. Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. 1. The atoms Boron through Neon and Hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  Google Scholar 

  37. van Lenthe, E., Baerends, E.J.: Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem. 24, 1142–1156 (2003)

    Article  Google Scholar 

  38. Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic-structure system. J. Comput. Chem. 14, 1347–1363 (1993)

    Article  Google Scholar 

  39. Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085–1123 (1999)

    Article  Google Scholar 

  40. Hager, W.W., Zhang, H.: Algorithm 851: CG-DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32, 113–137 (2006)

    Article  MathSciNet  Google Scholar 

  41. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG-Software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  43. Birgin, E.G., Martínez, J.M., Raydan, M.: Inexact Spectral Projected Gradient methods on convex sets. IMA J. Numer. Anal. 23, 539–559 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Martínez.

Additional information

This work was supported by PRONEX-Optimization (PRONEX-CNPq/FAPERJ E-26/171.510/2006-APQ1), FAPESP (Grants 2006/53768-0 and 2005/57684-2) and CNPq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francisco, J.B., Martínez, J.M., Martínez, L. et al. Inexact restoration method for minimization problems arising in electronic structure calculations. Comput Optim Appl 50, 555–590 (2011). https://doi.org/10.1007/s10589-010-9318-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9318-6

Keywords

Navigation