Skip to main content
Log in

Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The Inexact Restoration method for Euler discretization of state and control constrained optimal control problems is studied. Convergence of the discretized (finite-dimensional optimization) problem to an approximate solution using the Inexact Restoration method and convergence of the approximate solution to a continuous-time solution of the original problem are established. It is proved that a sufficient condition for convergence of the Inexact Restoration method is guaranteed to hold for the constrained optimal control problem. Numerical experiments employing the modelling language AMPL and optimization software Ipopt are carried out to illustrate the robustness of the Inexact Restoration method by means of two computationally challenging optimal control problems, one involving a container crane and the other a free-flying robot. The experiments interestingly demonstrate that one might be better-off using Ipopt as part of the Inexact Restoration method (in its subproblems) rather than using Ipopt directly on its own.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kaya, C.Y., Martínez, J.M.: Euler discretization for inexact restoration and optimal control. J. Optim. Theory Appl. 134, 191–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kaya, C.Y.: Inexact restoration for Runge-Kutta discretization of optimal control problems. SIAM J. Numer. Anal. 48(4), 1492–1517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bound for Euler approximation of a state and control constrained optimal control problem. Numer. Funct. Anal. Optim. 21(6), 653–682 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control problems. Math. Comput. 70, 173–203 (2000)

    Article  MathSciNet  Google Scholar 

  6. Malanowski, K., Büskens, C., Maurer, H.: Convergence of approximations to nonlinear optimal control problems. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations V. Lecture Notes in Pure and Applied Mathematics, vol. 195, pp. 253–284 (1997)

    Google Scholar 

  7. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation: Applications vol. II. Springer, Berlin (2006)

    Google Scholar 

  8. Martínez, J.M., Pilotta, E.A.: Inexact restoration algorithm for constrained optimization. J. Optim. Theory Appl. 104(1), 135–163 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Martínez, J.M.: Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear. J. Optim. Theory Appl. 111, 39–58 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Birgin, E.G., Martínez, J.M.: Local convergence of an Inexact-Restoration method and numerical experiments. J. Optim. Theory Appl. 127(2), 229–247 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaya, C.Y., Martínez, J.M.: Euler discretization for inexact restoration and optimal control. Technical report, (2006) http://www.ime.unicamp.br/~martinez/. See also: http://people.unisa.edu.au/yalcin.kaya

  12. Büskens, C.: Optimierungsmethoden and sensitivitätsanalyse für optimale steuerprozesse mit steuer- und Zustands-Beschränkungen. Ph.D. Thesis, Universität Münster (1998)

  13. Luus, R.: Iterative Dynamic Programming. Chapman and Hall/CRC, London (2000)

    Book  MATH  Google Scholar 

  14. Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach to Optimal Control Problems. Longman, New York (1991)

    MATH  Google Scholar 

  15. Sirisena, H.R., Chou, F.S.: Convergence of the control parameterization Ritz method for nonlinear optimal control problems. J. Optim. Theory Appl. 29(3), 369–382 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaya, C.Y., Lucas, S.K., Simakov, S.T.: Computations for bang–bang constrained optimal control using a mathematical programming formulation. Optim. Control Appl. Methods 25(6), 295–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaya, C.Y., Noakes, J.L.: Computational method for time-optimal switching control. J. Optim. Theory Appl. 117(1), 69–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maurer, H., Büskens, C., Kim, J.-H.R., Kaya, C.Y.: Optimization methods for the verification of second-order sufficient conditions for bang–bang controls. Optim. Control Appl. Methods 26(3), 129–156 (2005)

    Article  Google Scholar 

  19. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modelling Language for Mathematical Programming, 2nd edn. Brooks/Cole/Cengage Learning, Pacific Grove (2002)

    Google Scholar 

  20. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37, 181–218 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Nashua (1997)

    Google Scholar 

  23. Sakawa, Y., Shindo, Y.: Optimal control of container cranes. Automatica 18, 257–266 (1982)

    Article  MATH  Google Scholar 

  24. Augustin, D., Maurer, H.: Sensitivity analysis and real-time control of a container crane under state constraints. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 69–82. Springer, Berlin (2001)

    Chapter  Google Scholar 

  25. Pytlak, R., Vinter, R.B.: Feasible direction algorithm for optimal control problems with state and control constraints: implementation. J. Optim. Theory Appl. 101, 623–649 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Teo, K.L., Jennings, J.L.: Nonlinear optimal control problems with continuous state inequality constraints. J. Optim. Theory Appl. 63(1), 1–22 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Alt, W., Baier, R., Gerdts, M., Lempio, F.: Approximations for bang–bang solutions of linear control problems. Optimization (2011). doi:10.1080/02331934.2011.568619

    Google Scholar 

  28. Sakawa, Y.: Trajectory planning of a free-flying robot by using the optimal control. Optim. Control Appl. Methods 20, 235–248 (1999)

    Article  MathSciNet  Google Scholar 

  29. Vossen, G.A., Maurer, H.: On L 1-minimization in optimal control and applications to robotics. Optim. Control Appl. Methods 27, 301–321 (2006)

    Article  MathSciNet  Google Scholar 

  30. Andreani, R., Castro, S.L.C., Chela, J., Friedlander, J., Santos, S.A.: An inexact-restoration method for nonlinear bilevel programming problems. Comput. Optim. Appl. 43, 307–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Francisco, J.B., Martínez, J.M., Martínez, L., Pisnitchenko, F.: Inexact restoration method for minimization problems arising in electronic structure calculations. Comput. Optim. Appl. 50, 555–590 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gomes-Ruggiero, M.A., Martínez, J.M., Santos, S.A.: Spectral projected gradient method with inexact restoration for minimization with nonconvex constraints. SIAM J. Sci. Comput. 31, 1628–1652 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fischer, A., Friedlander, A.: A new line search inexact restoration approach for nonlinear programming. Comput. Optim. Appl. 46, 333–346 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Helmut Maurer for passing on to them his (the Ipopt-alone) AMPL code for the container crane example, and for further useful discussions. They also thank the referees and the editor for their comments and suggestions, which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yalçın Kaya.

Additional information

Communicated by Hans J. Oberle.

Appendix

Appendix

Proof of Proposition 2.1

It is not difficult to show that ∥V α (t)V α (t)T ζ∥≥βζ∥ if, and only if, V α (t)V α (t)T is nonsingular. This, in turn, is equivalent to the condition that V α (t) has full row rank. First, define the submatrices

$$V_{\alpha}^1(t) := \left[\begin{array}{c@{\quad}c@{\quad}c} \varTheta(t) &\ U_{\alpha}(t) &0 \end{array}\right] \quad\mbox{and}\quad V_{\alpha}^2(t) := \left[\begin{array}{c@{\quad}c@{\quad}c} \varUpsilon(t)B(t)&0&T_{\alpha}(t) \end{array}\right] . $$

In what follows, we will not show, whenever appropriate, dependence of variables on t, for simplicity in appearance. Furthermore, all arguments below will be made for some fixed t.

Denote the (2i−1)st row of \(V_{\alpha}^{1}(t)\) by r 2i−1, i=1,…,m. Then, clearly,

$$r_{2i-1} = e_i + \min\bigl\{0,u_i^* - \overline {b}_i + \alpha\bigr\} e_{m+2i-1} $$

and

$$r_{2i} = -e_i + \min\bigl\{0,-u_i^* + \underline {b}_i + \alpha\bigr\} e_{m+2i} , $$

where e i is the ith standard basis vector in ℝ3m+2n. Let p 2j−1, j=1,…,n, denote the (2j−1)st row of \(V_{\alpha}^{2}(t)\). Then

$$p_{2j-1} = \sum_{k=1}^m \frac{\partial f_j}{\partial u_k}\bigl(x^*,u^*\bigr) e_k + \min\bigl \{0,x_j^* - \overline {a}_j + \alpha\bigr\} e_{3m+2j-1} $$

and

$$p_{2j} = -\sum_{k=1}^m \frac{\partial f_j}{\partial u_k}\bigl(x^*,u^*\bigr) e_k + \min\bigl \{0,-x_j^* + \underline {a}_j + \alpha\bigr\} e_{3m+2j} . $$

Suppose that \(i\in \widetilde {J}_{u}:=J_{u}\backslash \widehat {J}_{u}\). Then \(\underline {b}_{i} < u_{i}^{*} < \overline {b}_{i}\) and \(\min\{u_{i}^{*}-\underline {b}_{i},\overline {b}_{i}-u_{i}^{*}\}>0\). Next, choose α such that \(0<\alpha < \widetilde {\alpha }_{i} := \min\{u_{i}^{*}-\underline {b}_{i},\overline {b}_{i}-u_{i}^{*}\}\). Since \(\min\{0,u_{i}^{*} - \overline {b}_{i}+\alpha\}\neq0\), \(\min\{0,-u_{i}^{*} + \underline {b}_{i}+\alpha\}\neq0\), and e m+2i−1e m+2i , the rows r 2i−1 and r 2i are linearly independent.

Suppose that \(j\in \widetilde {J}_{x}:=J_{x}\backslash \widehat {J}_{x}\). Via similar arguments, α can be chosen such that \(0<\alpha < \widetilde {\beta }_{j} := \min\{x_{j}^{*}-\underline {a}_{j},\overline {a}_{j}-x_{j}^{*}\}\), resulting in \(\min\{0,x_{i}^{*} - \overline {a}_{i}+\alpha\}\neq0\), \(\min\{0,-x_{i}^{*} + \underline {a}_{i}+\alpha\}\neq0\), and thus linearly independent p 2j−1 and p 2j .

Suppose that \(i\in \widehat {J}_{u}\). Then either \(u_{i}^{*}=\overline {b}_{i}\) or \(u_{i}^{*}=\underline {b}_{i}\) (only one side of the constraint is active at a given t). So \(\max\{u_{i}^{*}-\underline {b}_{i},\overline {b}_{i}-u_{i}^{*}\} > 0\). Choose α such that \(0<\alpha < \widehat {\alpha }_{i} := \max\{u_{i}^{*}-\underline {b}_{i},\overline {b}_{i}-u_{i}^{*}\}\). Then one of \(c_{i}^{1}:=\min\{0,u_{i}^{*} - \overline {b}_{i}+\alpha\}\) and \(c_{i}^{2}:=\min\{0,-u_{i}^{*} + \underline {b}_{i}+\alpha\}\) is zero and the other nonzero. Let the index set of the rows with \(c_{i}^{1}=0\) or \(c_{i}^{2}=0\) be denoted by \(\widehat {J}_{u}^{0} = \{k_{1},\ldots,k_{q}\}\) and the index set of the rows with c 1≠0 or c 2≠0 by \(\widehat {J}_{u}^{1} = \{\ell_{1},\ldots,\ell_{q}\}\). Then, for \(i\in \widehat {J}_{u}\) and \(\ell\in \widehat {J}_{u}^{1}\), we get

$$r_\ell = \pm e_i + \widetilde {\gamma }_i^u e_{m+\ell} , $$

where \(\widetilde {\gamma }_{i}^{x}\neq0\), and the sign of the first term depends on which side of a constraint is active. For \(i\in \widehat {J}_{u}\) and \(k\in \widehat {J}_{u}^{0}\), we have

$$r_k = \pm e_i . $$

Suppose that \(i\in \widehat {J}_{x}\). Proceeding similarly, we choose α such that \(0<\alpha < \widehat {\beta }_{i} := \max\{x_{i}^{*}-\underline {a}_{i},\overline {a}_{i}-x_{i}^{*}\}\). Let the index set of the rows corresponding to the active part of the two-sided constraints be denoted by \(\widehat {J}_{x}^{0} = \{\widehat {k}_{1},\ldots,\widehat {k}_{s}\}\) and the index set of the rows corresponding to the inactive part of the two-sided constraints be denoted by \(\widehat {J}_{x}^{1} = \{\widehat {\ell }_{1},\ldots,\widehat {\ell }_{s}\}\). Then, for \(j\in \widehat {J}_{x}\) and \(\widehat {\ell }\in \widehat {J}_{x}^{1}\), we get

$$p_{\widehat {\ell }} = \pm \sum_{\widetilde {k}=1}^m \frac{\partial f_j}{\partial u_{\widetilde {k}}}\bigl(x^*,u^*\bigr) e_{\widetilde {k}} + \widetilde {\gamma }_i^x e_{3m+\widehat {\ell }} , $$

where \(\widetilde {\gamma }_{i}^{x}\neq0\), and, for \(j\in \widehat {J}_{x}\) and \(\widehat {k}\in \widehat {J}_{x}^{0}\), we have

$$p_{\widehat {k}} = \pm \sum_{\widetilde {k}=1}^m \frac{\partial f_j}{\partial u_{\widetilde {k}}}\bigl(x^*,u^*\bigr) e_{\widetilde {k}} . $$

The rows r 2i−1 and r 2i for all \(i\in \widetilde {J}_{u}\), p 2j−1 and p 2j for all \(j\in \widetilde {J}_{x}\), r k for all \(k\in \widehat {J}_{u}^{1}\), and \(p_{\widehat {k}}\) for all \(\widehat {k}\in \widehat {J}_{x}^{1}\), are linearly independent, because each of these rows contains a nonzero element, which is either in the diagonal of the submatrix U α or in the diagonal the submatrix T α .

Now let us look at the remaining rows: r , for all \(\ell\in \widehat {J}_{u}^{0}\), have a nonzero element only in the submatrix Θ, and \(p_{\widehat {\ell }}\), for all \(\widehat {\ell }\in \widehat {J}_{x}^{0}\), have nonzero elements only in the submatrix ϒB. Therefore, V α has full row rank if, and only if, the block

$$\left [\begin{array}{c} r_{\ell_1} \\ \vdots \\ r_{\ell_q} \\ \cdots\cdots\cdots\cdots \\ p_{\widehat {\ell }_1} \\[2mm] \vdots \\[1mm] p_{\widehat {\ell }_s} \end{array} \right ] $$

has linearly independent rows, which is a condition equivalent to that in (10). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banihashemi, N., Yalçın Kaya, C. Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems. J Optim Theory Appl 156, 726–760 (2013). https://doi.org/10.1007/s10957-012-0140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0140-4

Keywords

Navigation