Skip to main content
Log in

Large-scale linearly constrained optimization

  • Published:
Mathematical Programming Submit manuscript

Abstract

An algorithm for solving large-scale nonlinear programs with linear constraints is presented. The method combines efficient sparse-matrix techniques as in the revised simplex method with stable quasi-Newton methods for handling the nonlinearities. A general-purpose production code (MINOS) is described, along with computational experience on a wide variety of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abadie, “Application of the GRG algorithm to optimal control problems”, in: J. Abadie, ed.,Integer and nonlinear programming (North-Holland, Amsterdam, 1970) pp. 191–211.

    Google Scholar 

  2. R.H. Bartels, “A stabilization of the simplex method”,Numerische Mathematik 16 (1971) 414–434.

    Google Scholar 

  3. R.H. Bartels and G.H. Golub, “The simplex method of linear programming using LU decomposition”,Communications of ACM 12 (1969) 266–268.

    Google Scholar 

  4. E.M.L. Beale, “Numerical methods”, in: J. Abadie, ed.,Nonlinear programming (North-Holland, Amsterdam, 1967) pp. 132–205.

    Google Scholar 

  5. J. Bracken and G.P. McCormick,Selected applications of nonlinear programming (Wiley, New York, 1968).

    Google Scholar 

  6. R.P. Brent, “Reducing the retrieval time of scatter storage techniques”,Communications of ACM 16 (1973) 105–109.

    Google Scholar 

  7. C.G. Broyden, “Quasi-Newton methods”, in: W. Murray, ed.,Numerical methods for unconstrained optimization (Academic Press, New York, 1972) pp. 87–106.

    Google Scholar 

  8. A. Buckley, “An alternate implementation of Goldfarb's minimization algorithm”,Mathematical Programming 8 (1975) 207–231.

    Google Scholar 

  9. A.R. Colville, “A comparative study on nonlinear programming codes”, IBM New York Scientific Center Report 320-2949 (1968).

  10. A.R. Conn, “Linear programming via a non-differentiable penalty function”,SIAM Journal of Numerical Analysis 13 (1) (1976) 145–154.

    Google Scholar 

  11. R.W. Cottle, “The principal pivoting method of quadratic programming”, in: G.B. Dantzig and A.F. Veinott, Jr., eds.,Mathematics of the decision sciences, Part 1 (American Mathematical Society, 1968) pp. 144–162.

  12. G.B. Dantzig,Linear programming and extensions (Princeton University Press, NJ, 1963).

    Google Scholar 

  13. W.C. Davidon, “Variable metric method for minimization”, AEC Research and Development Report ANL-5990 (1959).

  14. I.S. Duff, “On algorithms for obtaining a maximum transversal”, to appear.

  15. I.S. Duff and J.K. Reid, “An implementation of Tarjan's algorithm for the block triangularization of a matrix”, AERE Report C.S.S. 29 (1976), Harwell, England.

    Google Scholar 

  16. P. Faure and P. Huard, “Resolution de programmes mathematiques a fonction nonlineaire par la methode du gradient reduit”,Revue Francaise de Recherche Operationelle 36 (1965) 167–206.

    Google Scholar 

  17. R. Fletcher, “Minimizing general functions subject to linear constraints”, in: F.A. Lootsma, ed.,Numerical methods for nonlinear optimization (Academic Press, London and New York, 1972) pp. 279–296.

    Google Scholar 

  18. R. Fletcher and M.J.D. Powell, “A rapidly convergent descent method for minimization”,Computer Journal 6 (1963) 163–168.

    Google Scholar 

  19. R. Fletcher and C.M. Reeves, “Function minimization by conjugate gradients”,Computer Journal 7 (1964) 149–154.

    Google Scholar 

  20. P.E. Gill, G.H. Golub, W. Murray and M.A. Saunders, “Methods for modifying matrix factorizations”,Mathematics of Computation 28 (1974) 505–535.

    Google Scholar 

  21. P.E. Gill and W. Murray, “Quasi-Newton methods for unconstrained optimization”,Journal of Institute of Mathematics and its Applications 9 (1972) 91–108.

    Google Scholar 

  22. P.E. Gill and W. Murray, “Quasi-Newton methods for linearly constrained optimization”, Report NAC 32 (1973), National Physical Laboratory, Teddington.

    Google Scholar 

  23. P.E. Gill and W. Murray, “Newton-type methods for unconstrained and linearly constrained optimization”,Mathematical Programming 7 (1974) 311–350.

    Google Scholar 

  24. P.E. Gill and W. Murray, “Safeguarded steplength algorithms for optimization using descent methods”, Report NAC 37 (1974), National Physical Laboratory, Teddington.

    Google Scholar 

  25. P.E. Gill and W. Murray, eds.,Numerical methods for constrained optimization (Academic Press, London, 1974).

    Google Scholar 

  26. P.E. Gill and W. Murray, “Linearly constrained optimization including quadratic and linear programming”, in: Jacobs and Scriven, eds.,Modern numerical analysis (Academic Press, London, 1977), Proceedings of conference on “State of the art of numerical analysis”, University of York (April 1976).

    Google Scholar 

  27. P.E. Gill, W. Murray and S.M. Picken, “The implementation of two modified Newton algorithms for linearly constrained optimization” (to appear).

  28. P.E. Gill, W. Murray and R.A. Pitfield, “The implementation of two revised quasi-Newton algorithms for unconstrained optimization”, Report NAC 11 (1972), National Physical Laboratory, Teddington.

    Google Scholar 

  29. P.E. Gill, W. Murray and M.A. Saunders, “Methods for computing and modifying the LDV factors of a matrix”,Mathematics of Computation 29 (1975) 1051–1077.

    Google Scholar 

  30. D. Goldfarb, “Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints”,SIAM Journal of Applied Mathematics 17 (1969) 739–764.

    Google Scholar 

  31. D. Goldfarb, “On the Bartels—Golub decomposition for linear programming bases”, AERE Report C.S.S. 18 (1975), Harwell, England.

  32. E. Hellerman and D.C. Rarick, “Reinversion with the preassigned pivot procedure”,Mathematical Programming 1 (1971) 195–216.

    Google Scholar 

  33. E. Hellerman and D.C. Rarick, “The partitioned preassigned pivot procedure”, in: D.J. Rose and R.A. Willoughby, eds.,Sparse matrices and their applications (Plenum Press, New York, 1972) pp. 67–76.

    Google Scholar 

  34. D.M. Himmelblau,Applied nonlinear programming (McGraw-Hill, New York, 1972).

    Google Scholar 

  35. A. Jain, L.S. Lasdon and M.A. Saunders, “An in-core nonlinear mathematical programming system for large sparse nonlinear programs”, presented at ORSA/TIMS joint national meeting, Miami, Florida (November, 1976).

  36. J.E. Kalan, “Aspects of large-scale in-core linear programming”, Proceedings of ACM conference, Chicago (1971) 304–313.

  37. C.E. Lemke, “Bimatrix equilibrium points and mathematical programming”,Management Science 11 (1965) 681–689.

    Google Scholar 

  38. A.S. Manne, “Waiting for the breeder”, The review of economic studies symposium (1974) 47–65.

  39. A.S. Manne, “U.S. options for a transition from oil and gas to synthetic fuels”, presented at the World Congress of the Econometric Society, Toronto (August 1975).

  40. A.S. Manne, “ETA: a model for Energy Technology Assessment”,Bell Journal of Economics (Autumn 1976) 381–406.

  41. G.P. McCormick, “The variable-reduction method for nonlinear programming”,Management Science 17 (3) (1970) 146–160.

    Google Scholar 

  42. G.P. McCormick, “A second order method for the linearly constrained nonlinear programming problem”, in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds.,Nonlinear programming (Academic Press, New York, 1970) pp. 207–243.

    Google Scholar 

  43. B.A. Murtagh and P.D. Lucas, “The modelling of energy production and consumption in New Zealand”, IBM (N.Z.) 5 (1975) 3–6.

    Google Scholar 

  44. B.A. Murtagh and R.W.H. Sargent, “A constrained minimization method with quadratic convergence”, in: R. Fletcher, ed.,Optimization (Academic Press, New York, 1969) pp. 215–246.

    Google Scholar 

  45. A. Perry, “An improved conjugate gradient algorithm”, Technical note (March 1976), Dept. of Decision Sciences, Graduate School of Management, Northwestern University, Evanston, Illinois.

    Google Scholar 

  46. E. Polak,Computational methods in optimization: a unified approach (Academic Press, New York, 1971).

    Google Scholar 

  47. M.J. D. Powell, “Restart procedures for the conjugate gradient method”, AERE Report C.S.S. 24 (1975), Harwell, England.

    Google Scholar 

  48. D.C. Rarick, An improved pivot row selection procedure, implemented in the mathematical programming system MPS III, Management Science Systems, Rockville, MA, U.S.A.

  49. R.W.H. Sargent, “Reduced-gradient and projection methods for nonlinear programming”, in: P.E. Gill and W. Murray, eds.,Numerical methods for constrained optimization (Academic Press, London, 1974) pp. 149–174.

    Google Scholar 

  50. R.W. Sargent and B.A. Murtagh, “Projection methods for nonlinear programming”,Mathematical Programming 4 (1973) 245–268.

    Google Scholar 

  51. M.A. Saunders, “Large-scale linear programming using the Cholesky factorization”, Report STAN-CS-72-252 (1972), Computer Science Dept., Stanford University, Stanford, CA, U.S.A.

    Google Scholar 

  52. M.A. Saunders, “A fast, stable implementation of the simplex method using Bartels—Golub updating”, in: J.R. Bunch and D.J. Rose, eds.,Sparse Matrix Computations (Academic Press, New York, 1976) pp. 213–226.

    Google Scholar 

  53. B.R. Smith, P.D. Lucas and B.A. Murtagh, “The development of a New Zealand energy model”,N.Z. Operational Research 4 (2) (1976) 101–117.

    Google Scholar 

  54. J.A. Tomlin, “On pricing and backward transformation in linear programming”,Mathematical Programming 6 (1974) 42–47.

    Google Scholar 

  55. P. Wolfe, “The simplex method for quadratic programming”,Econometrica 27 (1959) 382–398.

    Google Scholar 

  56. P. Wolfe, “The reduced gradient method”, unpublished manuscript, The RAND Corporation (June 1962).

  57. P. Wolfe, “Methods of nonlinear programming”, in: J. Abadie, ed.,Nonlinear programming (North-Holland, Amsterdam, 1967) pp. 97–131.

    Google Scholar 

  58. M.J. Wood, “The February 1975 state of BUILD”, Ministry of Works and Development report (February 1975), Wellington, New Zealand.

  59. P.E. Gill, W. Murray, S.M. Picken, H.M. Barber and M.H. Wright, Subroutine LNSRCH, NPL Algorithms Library, Reference No. E4/16/0/Fortran/02/76 (February 1976).

  60. J.A. Tomlin, “Robust implementation of Lemke's method for the linear complementarity problem”, Technical Report SOL 76-24, Systems Optimization Laboratory, Stanford University (September 1976).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the U.S. Office of Naval Research (Contract N00014-75-C-0267), the National Science Foundation (Grants MCS71-03341 A04, DCR75-04544), the U.S. Energy Research and Development Administration (Contract E(04-3)-326 PA #18), the Victoria University of Wellington, New Zealand, and the Department of Scientific and Industrial Research Wellington, New Zealand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murtagh, B.A., Saunders, M.A. Large-scale linearly constrained optimization. Mathematical Programming 14, 41–72 (1978). https://doi.org/10.1007/BF01588950

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01588950

Key words

Navigation