Skip to main content
Log in

Euler Discretization and Inexact Restoration for Optimal Control

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A computational technique for unconstrained optimal control problems is presented. First, an Euler discretization is carried out to obtain a finite-dimensional approximation of the continuous-time (infinite-dimensional) problem. Then, an inexact restoration (IR) method due to Birgin and Martínez is applied to the discretized problem to find an approximate solution. Convergence of the technique to a solution of the continuous-time problem is facilitated by the convergence of the IR method and the convergence of the discrete (approximate) solution as finer subdivisions are taken. The technique is numerically demonstrated by means of a problem involving the van der Pol system; comprehensive comparisons are made with the Newton and projected Newton methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  2. Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)

    Article  MATH  Google Scholar 

  3. Von Stryk, O.: Numerical solution of optimal control problems by direct collocation. In: Bulirsch, R., Miele, A., Stoer, J., Well, K.H. (eds.) Optimal Control—Calculus of Variations, Optimal Control Theory and Numerical Methods. International Series of Numerical Mathematics, vol. 111, pp. 129–143. Birkhäuser, Basel (1993)

    Google Scholar 

  4. Sirisena, H.R., Chou, F.S.: Convergence of the control parameterization Ritz method for nonlinear optimal control problems. J. Optim. Theory Appl. 29, 369–382 (1979)

    Article  MATH  Google Scholar 

  5. Teo, K.L., Goh, C.J., Wong, K.H.: A unified computational approach to optimal control problems. Longman Scientific and Technical, New York (1991)

  6. Büskens, C.: Optimierungsmethoden und sensitivitätsanalyse für optimale steuerprozesse mit steuer- und zustands-beschränkungen. PhD Dissertation, Institut für Numerische Mathematik, Universität Münster (1998)

  7. Luus, R.: Iterative Dynamic Programming. Chapman and Hall/CRC, Boca Raton (2000)

    MATH  Google Scholar 

  8. Kaya, C.Y., Noakes, J.L.: Computational method for time-optimal switching control. J. Optim. Theory Appl. 117, 69–92 (2003)

    Article  MATH  Google Scholar 

  9. Kaya, C.Y., Lucas, S.K., Simakov, S.T.: Computations for bang–bang constrained optimal control using a mathematical programming formulation. Optim. Control Appl. Methods 25, 295–308 (2004)

    Article  MATH  Google Scholar 

  10. Dontchev, A.L., Hager, W.W.: The Euler approximation in state-constrained optimal control. Math. Comput. 70, 173–203 (2000)

    Google Scholar 

  11. Malanowski, K., Büskens, C., Maurer, H.: Convergence of approximations to nonlinear optimal control problems. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations V. Lecture Notes in Pure and Applied Mathematics, vol. 195, pp. 253–284. Dekker, New York (1997)

    Google Scholar 

  12. Mordukhovich, B.: On difference approximations of optimal control systems. J. Appl. Math. Mech. 42, 452–461 (1978)

    Article  MATH  Google Scholar 

  13. Veliov, V.: On the time-discretization of control systems. SIAM J. Control Optim. 35, 1470–1486 (1997)

    Article  MATH  Google Scholar 

  14. Birgin, E.G., Martínez, J.M.: Local convergence of an inexact-restoration method and numerical experiments. J. Optim. Theory Appl. 127, 229–247 (2005)

    Article  MATH  Google Scholar 

  15. Martínez, J.M., Pilotta, E.A.: Inexact restoration algorithm for constrained optimization. J. Optim. Theory Appl. 104, 135–163 (2000)

    Article  MATH  Google Scholar 

  16. Martínez, J.M.: Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming. J. Optim. Theory Appl. 111, 39–58 (2001)

    Article  MATH  Google Scholar 

  17. Abadie, J., Carpentier, J.: Generalization of the Wolfe reduced-gradient method to the case of nonlinear constraints. In: Fletcher, R. (ed.) Optimization, pp. 37–47. Academic, New York (1968)

    Google Scholar 

  18. Drud, A.: CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems. Math. Program. 31, 153–191 (1985)

    Article  MATH  Google Scholar 

  19. Lasdon, L.S.: Reduced gradient methods. In: Powell, M.J.D. (ed.) Nonlinear Optimization 1981, pp. 235–242. Academic, New York (1982)

    Google Scholar 

  20. Miele, A., Huang, H.Y., Heideman, J.C.: Sequential gradient-restoration algorithm for the minimization of constrained functions: ordinary and conjugate gradient version. J. Optim. Theory Appl. 4, 213–246 (1969)

    Article  MATH  Google Scholar 

  21. Rosen, J.B.: The gradient projection method for nonlinear programming, Part 2: Nonlinear constraints. SIAM J. Appl. Math. 9, 514–532 (1961)

    Article  Google Scholar 

  22. Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)

    MATH  Google Scholar 

  23. Dontchev, A.L., Hager, W.W., Veliov, V.M.: Uniform convergence and mesh independence of newton’s method for discretized variational problems. SIAM J. Control Optim. 39, 961–980 (2000)

    Article  MATH  Google Scholar 

  24. Alt, W.: Mesh-independence of the Lagrange-Newton method for nonlinear optimal control problems and their discretizations. Ann. Oper. Res. 101, 101–117 (2001)

    Article  MATH  Google Scholar 

  25. Maurer, H., Osmolovskii, N.P.: Second order sufficient conditions for time-optimal bang–bang control. SIAM J. Control Optim. 42, 2239–2263 (2004)

    Article  MATH  Google Scholar 

  26. URL: http://www.ime.unicamp.br/~martinez/

  27. URL: http://people.unisa.edu.au/yalcin.kaya

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Kaya.

Additional information

Communicated by T.L. Vincent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaya, C.Y., Martínez, J.M. Euler Discretization and Inexact Restoration for Optimal Control. J Optim Theory Appl 134, 191–206 (2007). https://doi.org/10.1007/s10957-007-9217-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-007-9217-x

Keywords

Navigation