Skip to main content
Log in

Structure of swollen carboxylated cellulose fibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Structural changes in cellulose fibers were elucidated for carboxymethylated fibers and fibers that are oxidized by periodate and chlorite. Non-fibrillated and partially fibrillated softwood, kraft fibers (SKF, m-SKF) were carboxymethylated to investigate the contribution of the S1 layer to the swollen fiber structures. Carboxymethylated non-fibrillated fibers (CMF) form balloon-like structures as they swell heterogeneously. When partially fibrillated SKF is carboxymethylated (m-CMF), the fibers do not exhibit this ballooning phenomenon due to the degradation of the S1 layer. Carboxymethylation disrupts the native cellulose crystalline structure without breaking the fibers apart. Periodate–chlorite oxidized fibers, on the other hand, swell homogeneously without disrupting the native cellulose I crystalline form. Periodate–chlorite oxidation damages all three secondary layers to the extent that any microfibril confinement caused by the swelling is removed. Each chemistry and mechanical treatment affects the cellulose fibers differently to yield various swollen structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aulin C, Ahola S, Josefsson P et al (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25:7675–7685. doi:10.1021/la900323n

    Article  CAS  Google Scholar 

  • Booker R, Sell J (1998) The nanostructure of the cell wall of softwoods and its functions in a living tree. Holz als Roh- und Werkst 56:1–8. doi:10.1007/s001070050255

  • Neagu RC, Gamstedt EK, Bardage SL, Lindström M (2006) Ultrastructural features affecting mechanical properties of wood fibres. Wood Mater Sci Eng 1:146–170. doi:10.1080/17480270701195374

  • Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part 1: free floating cotton and wood fibres in N-methylmorpholine-N-oxide–water mixtures. Macromol Symp 244:1–18. doi:10.1002/masy.200651201

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P, Heinze T (2008) Swelling and dissolution of cellulose. Part IV: free floating cotton and wood fibres in ionic liquids. Carbohydr Polym 72:590–596. doi:10.1016/j.carbpol.2007.09.029

    Article  CAS  Google Scholar 

  • Déjardin A, Laurans F, Arnaud D et al (2010) Wood formation in angiosperms. C R Biol 333:325–334. doi:10.1016/j.crvi.2010.01.010

    Article  Google Scholar 

  • Duchesne I, Hult E, Molin U et al (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111

    Article  CAS  Google Scholar 

  • Gehmayr V, Potthast A, Sixta H (2012) Reactivity of dissolving pulps modified by TEMPO-mediated oxidation. Cellulose 19:1125–1134. doi:10.1007/s10570-012-9729-x

    Article  CAS  Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766. doi:10.1098/rsif.2012.0341

    Article  CAS  Google Scholar 

  • Gustafsson J, Ciovica L, Peltonen J (2003) The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer 44:661–670. doi:10.1016/S0032-3861(02)00807-8

    Article  CAS  Google Scholar 

  • Heinze T, Pfeiffer K (1999) Studies on the synthesis and characterization of carboxymethylcellulose. Die Angew Makromol 266:37–45

    Article  CAS  Google Scholar 

  • Hu TQ, Hayak A (2012) Cellulose materials with novel properties. US Patent. US20120041183 A1

  • Hubbe M, Rojas O, Lucia L, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980

    Google Scholar 

  • Jardeby K, Lennholm H, Germgård U (2004) Characterisation of the undissolved residuals ID CMC-solutions. Cellulose 11:195–202

    Article  CAS  Google Scholar 

  • Jardeby K, Germgård U, Kreutz B et al (2005a) The influence of fibre wall thickness on the undissolved residuals in CMC solutions. Cellulose 12:167–175. doi:10.1007/s10570-004-1371-9

  • Jardeby K, Germgård U, Kreutz B et al (2005b) Effect of pulp composition on the characteristics of residuals in CMC made from such pulps. Cellulose 12:385–393. doi:10.1007/s10570-005-2202-3

    Article  CAS  Google Scholar 

  • Jeihanipour A, Karimi K, Taherzadeh MJ (2010) Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment. Biotechnol Bioeng 105:469–476. doi:10.1002/bit.22558

    Article  CAS  Google Scholar 

  • Khullar R, Varshney VK, Naithani S et al (2005) Carboxymethylation of cellulosic material (average degree of polymerization 2600) isolated from cotton (Gossypium) linters with respect to degree of substitution and rheological behavior. J Appl Polym Sci 96:1477–1482. doi:10.1002/app.21645

    Article  CAS  Google Scholar 

  • Le Moigne N, Navard P (2009) Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17:31–45. doi:10.1007/s10570-009-9370-5

    Article  Google Scholar 

  • Le Moigne N, Bikard J, Navard P (2010) Rotation and contraction of native and regenerated cellulose fibers upon swelling and dissolution: the role of morphological and stress unbalances. Cellulose 17:507–519. doi:10.1007/s10570-009-9395-9

    Article  CAS  Google Scholar 

  • Liimatainen H, Visanko M (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597

    Article  CAS  Google Scholar 

  • Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959. doi:10.1021/am301325r

    Article  CAS  Google Scholar 

  • Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41. doi:10.1186/1754-6834-4-41

    Article  CAS  Google Scholar 

  • Nägeli C (1864) Über den inneren Bau der vegetabilischen Zellmembranen. Sitzber Bay Akad Wiss Munchen 1:282–323

    Google Scholar 

  • O’Sullivan A (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207. doi:10.1023/A:1018431705579

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700. doi:10.1021/bm100214b

    Article  CAS  Google Scholar 

  • Ritter G (1928) Composition and structure of the cell wall of wood. Ind Eng Chem 20:941–945. doi:10.1021/ie50225a020

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Stawitz VJ, Kage MP (1959) Über die quellungsstadien der wasserlöslichen celluloseäther und die übermolekulare Struktur der Cellulose. Das Papier. 13:567–572

  • Tabet T, Aziz F (2013) Cellulose microfibril angle in wood and its dynamic mechanical significance. In: van de Ven T, Godbout L (eds) Cellulose—Fundamental Aspects, InTech, Croatia, pp 230–257

  • Tejado A, Alam MN, Antal M et al (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19:831–842. doi:10.1007/s10570-012-9694-4

    Article  CAS  Google Scholar 

  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353. doi:10.1021/bm101103p

    Article  CAS  Google Scholar 

  • Whiting P, Pulp DAIG (1981) The topochemistry of delignification shown by pulping middle lamella and secondary wall tissue from black spruce wood. J Wood Chem Technol 1:111–122. doi:10.1080/02773818108085108

    Article  CAS  Google Scholar 

  • Whitmore PM, Bogaard J (1994) Determination of the cellulose scission route in the hydrolytic and oxidative degradation of paper. Restaurator 15:26–45. doi:10.1515/rest.1994.15.1.26

    Article  CAS  Google Scholar 

  • Yang H, Tejado A, Alam N et al (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842. doi:10.1021/la2049663

    Article  CAS  Google Scholar 

  • Yoon MJ, Doh SJ, Im JN (2011) Preparation and characterization of carboxymethyl cellulose nonwovens by a wet-laid process. Fibers Polym 12:247–251. doi:10.1007/s12221-011-0247-5

    Article  CAS  Google Scholar 

  • Zhong R, Ye Z-H (2001) Secondary cell walls. Encycl Life Sci 1–9. doi:10.1002/9780470015902.a0021256

Download references

Acknowledgments

This work was supported by an NSERC Industrial Research Chair supported by FPInnovations, by the NSERC Green Fibre Network, and the FQRNT Centre for Self-Assembled Chemical Structures. Special thanks to Dr. Fred Morin at McGill NMR facility, Dr. Elke Küster-Schöck at McGill Cell Imaging and Analysis Network and Dr. Alois Vanerek for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo van de Ven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, G., Alam, M.N., Godbout, L. et al. Structure of swollen carboxylated cellulose fibers. Cellulose 21, 4595–4606 (2014). https://doi.org/10.1007/s10570-014-0425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0425-x

Keywords

Navigation