Skip to main content
Log in

Rotation and contraction of native and regenerated cellulose fibers upon swelling and dissolution: the role of morphological and stress unbalances

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Upon swelling and dissolution, native cellulose fibers such as cotton hairs or wood fibers are rotating and contracting. Regenerated cellulose fibers are only contracting, not rotating. Cotton hairs show two rotation mechanisms, a well known untwisting, not seen in wood fibers, due to the unwinding of the twists initially induced by the desiccation that occurs at the end of the growth, and a “microscopic rotation” that can also be slightly observed in wood fibers. In addition to these rotation mechanisms, cotton hairs and wood fibers show a rolling up of their primary wall that is due to the higher elongation of the external layers as compared to the internal layers arising during the elongation phase of the cell. Contraction originates from the fact that the cellulose chains are in an extended conformational state due to the spinning process for the regenerated fibers and to the bio-deposition process for native fibers. The contraction is related to the relaxation of the mean conformation of cellulose chains from an extended state to a more condensed state. Physical as well as mechanical modeling will support the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

R c :

Radius of the cylinders made by the rolled primary wall

R collars :

Radius of the collars

L :

Unrolled length of the two primary wall cylinders

e :

Thickness of the primary wall

Δf x :

Variation of the force per length unit along the x axis

Δf y :

Variation of the force per length unit along the y axis

ΔF x :

Variation of the force along the x axis

ΔF y :

Variation of the force along the y axis

Δm x :

Variation of the torque per length unit around the x axis

Δm y :

Variation of the torque per length unit around the y axis

ΔM x :

Variation of the torque around the x axis

ΔM y :

Variation of the torque around the y axis

ε xx :

Deformation along the x axis

ε yy :

Deformation along the y axis

ρ 0 x :

Initial radius of curvature along the x axis

ρ 0 y :

Initial radius of curvature along the y axis

ρ x :

Radius of curvature along the x axis after rolling up of the primary wall

ρ y :

Radius of curvature along the y axis after rolling up of the primary wall

E; υ :

Young modulus and Poisson coefficient in the cellulose chains direction

E; υ :

Young modulus and Poisson coefficient in the transverse direction to the cellulose chains

L E :

Length of a polymer chain at the extended state

L C :

Length of a polymer chain at the contracted state

l :

Length of one monomer unit

DPn :

Number average degree of polymerization

Mn :

Number average molar mass

Mw :

Weight average molar mass

References

  • Abu-Rous M, Ingolic E, Schuster KC (2006) Visualisation of the fibrillar and pore morphology of cellulosic fibres applying transmission electron microscopy. Cellulose 4:411–419

    Article  Google Scholar 

  • Baaijens FTP (1991) Calculation of residual stresses in injection moulded products. Rheol Acta 30:284–299

    Article  CAS  Google Scholar 

  • Bowling AJ, Amano Y, Lindstrom R, Brown RM Jr (2001) Rotation of cellulose ribbons during degradation with fungal cellulose. Cellulose 8:91–97

    Article  CAS  Google Scholar 

  • Brändström J, Bardage SL, Daniel G, Nilsson T (2003) The structural organisation of the S1 cell wall layer of Norway spruce tracheids. IAWA J 24:27–40

    Google Scholar 

  • Carra JH, Tripp VW, Orr RS (1962) Yarn untwisting as a rapid test of cotton swelling in various reagents. Text Res J 32:1041–1042

    Article  CAS  Google Scholar 

  • Chanzy H, Noe P, Paillet M, Smith P (1983) Swelling and dissolution of cellulose in amine oxide/water systems. J Appl Polym Sci 37:239–259

    CAS  Google Scholar 

  • Cuissinat C (2006) Swelling and dissolution mechanisms of native cellulose fibres. Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris, Sophia-Antipolis (France)

    Google Scholar 

  • Cuissinat C, Navard P (2006a) Swelling and dissolution of cellulose, Part I: free floating cotton and wood fibres in N-methylmorpholine-N-oxide–water mixtures. Macromol Symp 244:1–18

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2006b) Swelling and dissolution of cellulose, Part II: free floating cotton and wood fibres in NaOH water-additives systems. Macromol Symp 244:19–30

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2008) Swelling and dissolution of cellulose, Part III: plant fibres in aqueous systems. Cellulose 15:67–74

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P, Heinze T (2008a) Swelling and dissolution of cellulose, Part IV: free floating cotton and wood fibres in ionic liquids. Carbohydr Polym 72:590–596

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P, Heinze T (2008b) Swelling and dissolution of cellulose, Part V: cellulose derivatives fibres in aqueous systems and ionic liquids. Cellulose 15:75–80

    Article  CAS  Google Scholar 

  • Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759

    Article  CAS  Google Scholar 

  • El-Shiekh A, Bogdan JF, Gupta RK (1971) The Mechanics of bicomponent fibers: part I: theoretical analysis. Text Res J 41:281–297

    Article  Google Scholar 

  • Flemming N, Thaysen AC (1919) On the deterioration of cotton on wet storage. Biochem J 14:25–29

    Google Scholar 

  • Flemming N, Thaysen AC (1921) On the deterioration of cotton on wet storage. Biochem J 14:407–415

    Google Scholar 

  • Giroud T, Vincent M (2004) Evaluation of residual stresses in short fiber reinforced thermoplastic molded parts. Mec Ind 5:481–487

    Google Scholar 

  • Hensen F (1989) New developments in fiber and film extrusion. Intern Polym Process 4:64–72

    CAS  Google Scholar 

  • Hock CW (1950) Degradation of cellulose as revealed microscopically. Text Res J 20:141–151

    Article  CAS  Google Scholar 

  • Hock CW (1954) Structures and properties of cellulose fibers–microscopic structure. In: Ott E, Spurlin HM, Grafflin MW (eds) Cellulose and cellulose derivatives (Part 1), 2nd edn. Interscience Publisher, New York, London, pp 347–392

    Google Scholar 

  • Hsieh Y-L (1999) Structural development of cotton fibers and linkages to fiber quality. In: Basra AS (ed) Cotton fibers: developmental biology, quality improvement and textile processing. Food Products Press/Haworth Press, New York, London, Oxford, pp 137–165

    Google Scholar 

  • Isayev AI, Kwon K (2009) Volumetric and anisotropic shrinkage in injection moldings of thermoplastics. In: Kamal MR, Isayev AI, Liu S-J (eds) Injection molding–technology and fundamentals. Hanser, Munich, pp 779–807

    Google Scholar 

  • Jianchin Z, Meiwu S, Zhu H, Kan L (1999) Study of the skin-core structure of lyocell staple fibers. Chem Fibers Int 49:496–500

    Google Scholar 

  • Kassenbeck P (1970) Bilateral structure of cotton fibers as revealed by enzymatic degradation. Text Res J 40:330–334

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) General considerations on structure and reactivity of cellulose. In: Comprehensive cellulose chemistry, vol 1. Wiley-VCH, Weinheim, pp 9–165

    Google Scholar 

  • Klemm D, Schmauder HP, Heinze T (2002) Cellulose. In: Vandamme EJ, De Baets S, Steinbüchel A (eds) Biopolymers, vol 6. Wiley-VCH, Weinheim, pp 275–319

    Google Scholar 

  • Krässig HA (1993) Cellulose–structure, accessibility and reactivity. Polymer monographs, vol 11. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Le Moigne N, Montes E, Pannetier C, Höfte H, Navard P (2008) Gradient in dissolution capacity of successively deposited cell wall layers in cotton fibres. Macromol Symp 262:65–71

    Article  CAS  Google Scholar 

  • Le Moigne N, Spinu M, Heinze T, Navard P (2009) Restricted dissolution and derivatization capacities of cellulose fibers under uniaxial elongational stress. Polymer. doi:10.1016/j.polymer.2009.11.053

    Google Scholar 

  • Lenz J, Schurz J, Wrentschur E (1993) Properties and structure of solvent-spun and viscose-type fibres in the swollen state. Colloid Polym Sci 271:460–468

    Article  CAS  Google Scholar 

  • Matsuo T (1977) Polypropylene fibers crimped by asymmetrical quenching. J Text Mach Soc Japan 23:29–34

    Google Scholar 

  • Nägeli C (1864) Über den inneren Bau der vegetabilischen Zellmembranen. Sitzber Bay Akad Wiss München 1:282–323 2:114–171

    Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  CAS  Google Scholar 

  • Paris A (1992) Influence des conditions de filage sur les propriétés physiques et mécaniques de fibres de polypropylène. Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris, Sophia-Antipolis (France)

    Google Scholar 

  • Pennetier G (1883) Note micrographique sur les altérations du cotton. Bull Soc Ind Rouen 11:235–237

    Google Scholar 

  • Roelofsen PA (1959) The cell-wall structure. In: Zimmerman W, Ozenda PG (eds) The plant cell wall—Encyclopedia of plant anatomy. Gebrüder Borntraeger, Berlin, pp 102–305

    Google Scholar 

  • Rollins ML, Tripp VW (1954) Optical and electron microscopic studies of cotton fiber structure. Text Res J 24:345–357

    Article  CAS  Google Scholar 

  • Ryser U (1999) Cotton fiber initiation and histodifferentiation. In: Basra AS (ed) Cotton fibers: developmental biology, quality improvement and textile processing. Food Products Press/Haworth Press, New York, pp 1–45

    Google Scholar 

  • Saalwchter K, Burchard W, Klfers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107

    Article  Google Scholar 

  • Sahlberg U, Salmén L, Oscarsson A (1997) The fibrillar orientation in the S2-layer of wood fibers as determined by X-ray diffraction analysis. Wood Sci Technol 31:77–86

    CAS  Google Scholar 

  • Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201:2008–2022

    Article  CAS  Google Scholar 

  • Schurz J (1994) Was ist neu an den neuen Fasern der Gattung Lyocell ? Lenzinger Ber 74:37–40

    CAS  Google Scholar 

  • Treuting RG, Read WT (1951) A mechanical determination of biaxial residual stress in sheet materials. J Appl Phys 22:130–134

    Article  Google Scholar 

  • Tripp VW, Rollins ML (1952) Morphology and chemical composition of certain components of cotton fiber cell wall. Anal Chem 24:1721–1728

    Article  CAS  Google Scholar 

  • Warwicker JO, Jeffries R, Colbran RL, Robinson RN (1966) A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton. Shirley Institute Pamphlet No. 93, St Ann’s Press, England

    Google Scholar 

Download references

Acknowledgments

The authors thank Borregaard, Dow Wolff Cellulosics GmbH, Lenzing AG and Spontex for their financial and technical support and their staff for scientific discussions. They thank INRA Versailles for providing cotton samples. NLM thanks the MINES Carnot institute for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Navard.

Additional information

The CEMEF is member of the European Polysaccharide Network of Excellence (EPNOE), www.epnoe.eu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Moigne, N., Bikard, J. & Navard, P. Rotation and contraction of native and regenerated cellulose fibers upon swelling and dissolution: the role of morphological and stress unbalances. Cellulose 17, 507–519 (2010). https://doi.org/10.1007/s10570-009-9395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9395-9

Keywords

Navigation