Skip to main content
Log in

Dissolution mechanisms of wood cellulose fibres in NaOH–water

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Four wood pulps and a microcrystalline cellulose were dissolved in a NaOH 8%–water solution. Insoluble fractions and clear solution fractions were isolated by centrifugation and were observed by optical microscopy and transmission electron microscopy. Molecular weight distribution, carbohydrate composition and cellulose II content were measured. The dissolution of wood cellulose fibres in NaOH 8%–water solutions occurs by successive dismantlement and fragmentation steps governed by the swelling and the shearing of the original structure. The cellulose from insoluble and clear solution fractions is in both case converted in cellulose II and the insoluble fractions contain embedded mannans. Besides, the molecular weight distributions of cellulose from insoluble and clear solution fractions reveal the existence of heterogeneities in dissolution capacity of the cellulose chains, independent to the degree of polymerization, which are related to the chemical environment of the chains in the fibre structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969

    Article  Google Scholar 

  • Baldinger T, Moosbauer J, Sixta H (2000) Supermolecular structure of cellulosic materials by Fourier transform infrared spectroscopy (FT-IR) calibrated by WAXS and 13C NMR. Lenzinger Ber 79:15–17

    CAS  Google Scholar 

  • Brändström J, Bardage SL, Daniel G, Nilsson T (2003) The structural organisation of the S1 cell wall layer of Norway spruce tracheids. IAWA J 24:27–40

    Google Scholar 

  • Chanzy H, Noe P, Paillet M, Smith P (1983) Swelling and dissolution of cellulose in amine oxide/water systems. J Appl Polym Sci 37:239–259

    CAS  Google Scholar 

  • Cuissinat C (2006) Swelling and dissolution mechanisms of native cellulose fibres. PhD dissertation, Ecole Nationale Supérieure des Mines de Paris, Sophia-Antipolis, France

  • Cuissinat C, Navard P (2006a) Swelling and dissolution of cellulose, part I: free floating cotton and wood fibres in N-methylmorpholine-N-oxide–water mixtures. Macromol Symp 244:1–15

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2006b) Swelling and dissolution of cellulose, part II: free floating cotton and wood fibres in NaOH water-additives systems. Macromol Symp 244:19–30

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2008) Swelling and dissolution of cellulose, part III: plant fibres in aqueous systems. Cellulose 15:67–74

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P, Heinze T (2008a) Swelling and dissolution of cellulose, part IV: free floating cotton and wood fibres in ionic liquids. Carbohydr Polym 72:590–596

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P, Heinze T (2008b) Swelling and dissolution of cellulose, part V: cellulose derivatives fibres in aqueous systems and ionic liquids. Cellulose 15:75–80

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose-sodium hydroxide below 0 °C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287

    Article  CAS  Google Scholar 

  • Fahlén J (2005) The cell wall ultrastructure of wood fibers: Effects of the chemical pulp fiber line. PhD dissertation, KTH Royal Institute of Technology, Stockholm, Sweden

  • Fengel D (1971) Ideas on ultrastructural organisation of cell-wall components. J Polym Sci part C 9:383–392

    Google Scholar 

  • Flemming N, Thaysen AC (1919) On the deterioration of cotton on wet storage. Biochem J 14(1):25–28

    Google Scholar 

  • Hackney JM, Atalla RH, VanderHart DL (1994) Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble beta-1,4-linked polysaccharides: 13C NMR evidence. Int J Biol Macromol 16:215–218

    Article  CAS  Google Scholar 

  • Hock CW (1950) Degradation of cellulose as revealed microscopically. Text Res J 20:141–151

    Article  CAS  Google Scholar 

  • Hock CW (1954) Microscopic structure. In: Ott E, Spurlin HM, Grafflin MW (eds) Cellulose and cellulose derivatives (part 1), 2nd edn. Interscience, New York, pp 347–392

    Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Isogai A, Ishizu A, Nakano J (1989) Residual lignin and hemicellulose in wood cellulose, analysis using new permethylation method. Holzforschung 43:333–338

    Article  CAS  Google Scholar 

  • Iwata T, Indrarti L, Azuma JI (1998) Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5:215–228

    Article  CAS  Google Scholar 

  • Jardeby K, Germgård U, Kreutz B, Heinze T, Heinze U, Lennholm H (2005) The influence of fibre wall thickness on the undissolved residuals in CMC solutions. Cellulose 12:167–175

    Article  CAS  Google Scholar 

  • Łaszkiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67:1871–1876

    Article  Google Scholar 

  • Le Moigne N (2008) Swelling and dissolution mechanisms of cellulose fibres. PhD dissertation, Ecole Nationale Supérieure des Mines de Paris, Sophia Antipolis, France

  • Le Moigne N, Montes E, Pannetier C, Höfte H, Navard P (2008) Gradient in dissolution capacity of successively deposited cell wall layers in cotton fibres. Macromol Symp 262:65–71

    Article  CAS  Google Scholar 

  • Nägeli C (1864) Über den inneren Bau der vegetabilischen Zellmembranen. Sitzber Bay Akad Wiss München 1:282–323, 2:114–171

    Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Pennetier G (1883) Note micrographique sur les altérations du cotton. Bull Soc Ind Rouen 11:235–237

    Google Scholar 

  • Roelofsen PA (1959) The cell-wall structure. In: Zimmerman W, Ozenda PG (eds) The plant cell wall—Encyclopedia of plant anatomy. Gebrüder Borntraeger, Berlin, pp 102–305

  • Rollins ML, Tripp VW (1954) Optical and electron microscopic studies of cotton fiber structure. Text Res J 24:345–357

    Article  CAS  Google Scholar 

  • Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecules 4:259–264

    Article  CAS  Google Scholar 

  • Sahlberg U, Salmén L, Oscarsson A (1997) The fibrillar orientation in the S2 layer of wood fibres as determined by X-ray diffraction analysis. Wood Sci Technol 31:77–86

    CAS  Google Scholar 

  • Salmén L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure–property relationships. J Pulp Pap Sci 24:99–103

    Google Scholar 

  • Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201:2008–2022

    Article  CAS  Google Scholar 

  • Stawitz J, Kage MP (1959) Über die Quellungsstadien der wasserlöslichen Celluloseäther und die übermolekulare Struktur der Celllose. Das Papier 13:567–572

    CAS  Google Scholar 

  • Tripp VW, Rollins ML (1952) Morphology and chemical composition of certain components of cotton fiber cell wall. Anal Chem 24:1721–1728

    Article  CAS  Google Scholar 

  • Vehviläinen M, Kamppuri T, Rom M, Jaroslaw J, Ciechańska D, Grönqvist S, Siika-Aho M, Christoffersson KE, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15:671–680

    Article  Google Scholar 

  • Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K, Sawada T (1990a) Characterization of cellulose treated by the steam explosion method. Part 1. Influence of cellulose resources on changes in morphology, degree of polymerization, solubility and solid structure. Br Polym J 22:73–83

    Article  CAS  Google Scholar 

  • Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K, Sawada T (1990b) Characterization of cellulose treated by the steam explosion method. Part 2: effect of treatment conditions on changes in morphology, degree of polymerization, solubility in aqueous sodium hydroxide, and supermolecular structure of soft wood pulp during steam explosion. Br Polym J 22:121–128

    Article  CAS  Google Scholar 

  • Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K, Sawada T (1990c) Characterization of cellulose treated by the steam explosion method. Part 3: effect of crystal forms (cellulose I, II and III) of original cellulose on changes in morphology, degree of polymerization, solubility and supermolecular structure by steam explosion. Br Polym J 22:201–212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank J. Engelhardt, K. Jardeby, T. Hjerde, H. Harms, M. Pierre and C. Schrempf for discussions and Borregaard, Dow Wolff Cellulosics GmbH, Lenzing AG and Spontex for their technical and financial support. We also thank B Saake and J. Puls from the vTI-Institute of Wood Technology and Wood Biology for discussions and providing the kraft sample and the Institut of Molecular and Cellular pharmacology (IPMC) for their help in centrifugation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Navard.

Additional information

Nicolas Le Moigne and Patrick Navard are members of the European Polysaccharide Network of Excellence (EPNOE), www.epnoe.eu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Moigne, N., Navard, P. Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17, 31–45 (2010). https://doi.org/10.1007/s10570-009-9370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9370-5

Keywords

Navigation