Skip to main content
Log in

Improvement of C–C Coupling Using SiC as a Support of Cobalt Catalysts in Fischer Tropsch Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work aimed to synthesize SiC via magnesiothermic reduction reaction (MRR) and also to evaluate its use as support in a cobalt-based catalyst for Fischer–Tropsch Synthesis (FTS). The Co/SiC catalyst obtained using synthesized SiC, showing greater stability and selectivity to C–C coupling than the reference catalyst prepared with commercial SiC.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Todic B, Nowicki L, Nikacevic N, Bukur DB (2016) Fischer-Tropsch Synthesis product selectivity over an industrial iron-based catalyst: effect of process conditions. Catal Today 261:28–39. https://doi.org/10.1016/j.cattod.2015.09.005

    Article  CAS  Google Scholar 

  2. Li H, Hou B, Wang J et al (2018) Direct conversion of syngas to isoparaffins over hierarchical beta zeolite supported cobalt catalyst for Fischer-Tropsch Synthesis. Mol Catal 459:106–112. https://doi.org/10.1016/j.mcat.2018.08.002

    Article  CAS  Google Scholar 

  3. Chen Y, Liu C, Zhang Y, hua, et al (2017) The influence of Fe, Ti, Ga and Zn on the Fischer-Tropsch Synthesis catalytic performance of Co-based hierarchically porous ZSM-5 zeolite catalysts. Catal Letters 147:502–508. https://doi.org/10.1007/s10562-016-1926-z

    Article  CAS  Google Scholar 

  4. Nanduri A, Mills PL (2020) Effect of catalyst shape and multicomponent diffusion flux models on intraparticle transport-kinetic interactions in the gas-phase Fischer–Tropsch Synthesis. Fuel 278:118117. https://doi.org/10.1016/j.fuel.2020.118117

    Article  Google Scholar 

  5. Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer–Tropsch process. Appl Catal A Gen 138:319–344. https://doi.org/10.1016/0926-860X(95)00306-1

    Article  CAS  Google Scholar 

  6. Xing C, Yang G, Wu M et al (2015) Hierarchical zeolite Y supported cobalt bifunctional catalyst for facilely tuning the product distribution of Fischer-Tropsch Synthesis. Fuel 148:48–57. https://doi.org/10.1016/j.fuel.2015.01.040

    Article  CAS  Google Scholar 

  7. Zhong M, Guo Y, Wang J et al (2019) Facile preparation of highly thermal conductive ZnAl2O4@Al composites as efficient supports for cobalt-based Fischer–Tropsch synthesis. Fuel 253:1499–1511. https://doi.org/10.1016/j.fuel.2019.05.124

    Article  CAS  Google Scholar 

  8. Díaz JA, Calvo-Serrano M, De La Osa AR et al (2014) B-Silicon carbide as a catalyst support in the Fischer-Tropsch Synthesis: Influence of the modification of the support by a pore agent and acidic treatment. Appl Catal A Gen 475:82–89. https://doi.org/10.1016/j.apcata.2014.01.021

    Article  CAS  Google Scholar 

  9. Song H, Zhao Q, Zhou X et al (2018) Selection of highly active and stable Co supported SiC catalyst for Fischer-Tropsch Synthesis: Effect of the preparation method. Fuel 229:144–150. https://doi.org/10.1016/j.fuel.2018.05.025

    Article  CAS  Google Scholar 

  10. Fortsch D, Pabst K, GroB-Hardt E (2015) The product distribution in Fischer-Tropsch Synthesis: An extension of the ASF model to describe common deviations. Chem Eng Sci 138:333–346. https://doi.org/10.1016/j.ces.2015.07.005

    Article  CAS  Google Scholar 

  11. Liu Y, Florea I, Ersen O et al (2015) Silicon carbide coated with TiO2 with enhanced cobalt active phase dispersion for Fischer–Tropsch Synthesis. Chem Commun 51:145–148. https://doi.org/10.1039/C4CC07469F

    Article  CAS  Google Scholar 

  12. Sage V, Sun Y, Hazewinkel P et al (2017) Modified product selectivity in Fischer–Tropsch Synthesis by catalyst pre-treatment. Fuel Process Technol 167:183–192. https://doi.org/10.1016/j.fuproc.2017.07.002

    Article  CAS  Google Scholar 

  13. De La Osa AR, De Lucas A, Díaz-Maroto J et al (2012) FTS fuels production over different Co/SiC catalysts. Catal Today 187:173–182. https://doi.org/10.1016/j.cattod.2011.12.029

    Article  CAS  Google Scholar 

  14. Solomonik IG, Gryaznov KO, Skok VF, Mordkovich VZ (2015) Formation of surface cobalt structures in SiC-supported Fischer–Tropsch catalysts. RSC Adv 5:78586–78597. https://doi.org/10.1039/c5ra11853k

    Article  CAS  Google Scholar 

  15. de la Osa AR, Romero A, Dorado F et al (2016) Influence of cobalt precursor on efficient production of commercial fuels over FTS Co/SiC catalyst. Catalysts 6:98–116. https://doi.org/10.3390/catal6070098

    Article  CAS  Google Scholar 

  16. de la Osa AR, Romero A, Díez-Ramírez J et al (2017) Influence of a zeolite-based cascade layer on Fischer–Tropsch fuels production over silicon carbide supported cobalt catalyst. Top Catal 60:1082–1093. https://doi.org/10.1007/s11244-017-0792-2

    Article  CAS  Google Scholar 

  17. Munirathinam R, Pham Minh D, Nzihou A (2018) Effect of the support and its surface modifications in cobalt-based Fischer–Tropsch Synthesis. Ind Eng Chem Res 57:16137–16161. https://doi.org/10.1021/acs.iecr.8b03850

    Article  CAS  Google Scholar 

  18. Wang M, Guo S, Li Z et al (2019) The role of SiO x C y in the catalytic performance of Co/SiC catalysts for Fischer–Tropsch synthesis. Fuel 241:669–675. https://doi.org/10.1016/j.fuel.2018.12.033

    Article  CAS  Google Scholar 

  19. De La Osa AR, De Lucas A, Sánchez-Silva L et al (2012) Performing the best composition of supported Co/SiC catalyst for selective FTS diesel production. Fuel 95:587–598. https://doi.org/10.1016/j.fuel.2011.11.002

    Article  CAS  Google Scholar 

  20. De La Osa AR, De Lucas A, Romero A et al (2011) Influence of the catalytic support on the industrial Fischer–Tropsch synthetic diesel production. Catal Today 176:298–302. https://doi.org/10.1016/j.cattod.2010.12.010

    Article  CAS  Google Scholar 

  21. Liu Y, Ersen O, Meny C et al (2014) Fischer–Tropsch reaction on a thermally conductive and reusable silicon carbide support. Chemsuschem 7:1218–1239. https://doi.org/10.1002/cssc.201300921

    Article  CAS  PubMed  Google Scholar 

  22. Iablokov V, Alekseev SA, Gryn S et al (2020) Superior Fischer–Tropsch performance of uniform cobalt nanoparticles deposited into mesoporous SiC. J Catal 383:297–303. https://doi.org/10.1016/j.jcat.2020.01.028

    Article  CAS  Google Scholar 

  23. Wang ZR, Liu L, Zhang X et al (2019) Low temperature synthesis of mesoporous SiC in Dual-confined spaces via magnesiothermic reduction. NANO 14:1–10. https://doi.org/10.1142/S1793292019501157

    Article  CAS  Google Scholar 

  24. Hidayat N, Ardiansyah FA et al (2019) Magnesiothermic reduction synthesis of silicon carbide with varying temperatures: Structural and mechanical features. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/515/1/012079

    Article  Google Scholar 

  25. Clark MD, Walker LS, Hadjiev VG et al (2011) Fast sol-gel preparation of silicon carbide-silicon oxycarbide nanocomposites. J Am Ceram Soc 94:4444–4452. https://doi.org/10.1111/j.1551-2916.2011.04707.x

    Article  CAS  Google Scholar 

  26. Yu L, Liu X, Fang Y et al (2013) Highly active Co/SiC catalysts with controllable dispersion and reducibility for Fischer-Tropsch Synthesis. Fuel 112:483–488. https://doi.org/10.1016/j.fuel.2013.04.072

    Article  CAS  Google Scholar 

  27. Najafi A, Golestani-Fard F, Rezaie HR (2015) Improvement of SiC nanopowder synthesis by sol–gel method via TEOS/resin phenolic precursors. J Sol-Gel Sci Technol 75:255–263. https://doi.org/10.1007/s10971-015-3695-3

    Article  CAS  Google Scholar 

  28. Duong-Viet C, Ba H, El-Berrichi Z et al (2016) Silicon carbide foam as a porous support platform for catalytic applications. New J Chem 40:4285–4299. https://doi.org/10.1039/c5nj02847g

    Article  CAS  Google Scholar 

  29. Zhong Y, Shaw LL, Manjarres M, Zawrah MF (2010) Synthesis of silicon carbide nanopowder using silica fume. J Am Ceram Soc 93:3159–3167. https://doi.org/10.1111/j.1551-2916.2010.03867.x

    Article  CAS  Google Scholar 

  30. Mukasyan AS, Lin YC, Rogachev AS, Moskovskikh DO (2013) Direct combustion synthesis of silicon carbide nanopowder from the elements. J Am Ceram Soc 96:111–117. https://doi.org/10.1111/jace.12107

    Article  CAS  Google Scholar 

  31. Hoffmann C, Plate P, Steinbrück A, Kaskel S (2015) Nanoporous silicon carbide as nickel support for the carbon dioxide reforming of methane. Catal Sci Technol 5:4174–4183. https://doi.org/10.1039/c4cy01234h

    Article  CAS  Google Scholar 

  32. Nersisyan HH, Won HI, Won CW et al (2014) Direct magnesiothermic reduction of titanium dioxide to titanium powder through combustion synthesis. Chem Eng J 235:67–74. https://doi.org/10.1016/j.cej.2013.08.104

    Article  CAS  Google Scholar 

  33. Tsuboi Y, Ura S, Takahiro K et al (2017) Magnesiothermic reduction of silica glass substrate—Chemical states of silicon in the generated layers. J Asian Ceram Soc 5:341–349. https://doi.org/10.1016/j.jascer.2017.06.010

    Article  Google Scholar 

  34. Li F, Tan C, Liu J et al (2019) Low temperature synthesis of ZrB2-SiC powders by molten salt magnesiothermic reduction and their oxidation resistance. Ceram Int 45:9611–9617. https://doi.org/10.1016/j.ceramint.2018.10.191

    Article  CAS  Google Scholar 

  35. Saeedifar Z, Nourbakhsh AA, Saeedifar M (2017) Effect of Mg particle sizes on synthesis of mesoporous silicon carbide by magnesiothermic reduction process. Inorg Nano-Metal Chem 47:370–374. https://doi.org/10.1080/15533174.2016.1186057

    Article  CAS  Google Scholar 

  36. Haouli S, Boudebane S, Slipper IJ et al (2018) Combustion synthesis of silicon by magnesiothermic reduction. Phosphorus Sulfur Silicon Relat Elem 193:280–287. https://doi.org/10.1080/10426507.2017.1416615

    Article  CAS  Google Scholar 

  37. Zheng Y, Fang H, Wang F et al (2019) Fabrication and characterization of mesoporous Si/SiC derived from diatomite via magnesiothermic reduction. J Solid State Chem 277:654–657. https://doi.org/10.1016/j.jssc.2019.07.026

    Article  CAS  Google Scholar 

  38. Han P, Sun W, Li D et al (2019) Morphology-controlled synthesis of hollow Si/C composites based on KI-assisted magnesiothermic reduction for high performance Li-ion batteries. Appl Surf Sci 481:933–939. https://doi.org/10.1016/j.apsusc.2019.03.051

    Article  CAS  Google Scholar 

  39. Zhang X-F, Chen Z, Feng Y et al (2017) Low-temperature transformation of C/SiO2 nanocomposites to β-SiC with high surface area. ACS Sustain Chem Eng 6:1068–1073. https://doi.org/10.1021/acssuschemeng.7b03375

    Article  CAS  Google Scholar 

  40. Ahn J, Kim HS, Pyo J et al (2016) Variation in crystalline phases: controlling the selectivity between silicon and silicon carbide via magnesiothermic reduction using silica/carbon composites. Chem Mater 28:1526–1536. https://doi.org/10.1021/acs.chemmater.5b05037

    Article  CAS  Google Scholar 

  41. Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer–Tropsch Synthesis catalysts. Appl Catal A Gen 161:59–78. https://doi.org/10.1016/S0926-860X(97)00186-5

    Article  CAS  Google Scholar 

  42. Isaeva VI, Eliseev OL, Kazantsev RV et al (2018) Effect of the support morphology on the performance of Co nanoparticles deposited on metal–organic framework MIL-53(Al) in Fischer–Tropsch synthesis. Polyhedron 157:389–395. https://doi.org/10.1016/j.poly.2018.10.001

    Article  CAS  Google Scholar 

  43. Zou J, Mu X, Zhao W et al (2016) Improved catalytic activity of SiC supported Ni catalysts for CO2 reforming of methane via surface functionalizations. Catal Commun 84:116–119. https://doi.org/10.1016/j.catcom.2016.06.022

    Article  CAS  Google Scholar 

  44. Liu JX, Wang P, Xu W, Hensen EJM (2017) Particle size and crystal phase effects in Fischer-Tropsch catalysts. Engineering 3:467–476. https://doi.org/10.1016/J.ENG.2017.04.012

    Article  Google Scholar 

  45. Jahangiri H, Bennett J, Mahjoubi P et al (2014) A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal Sci Technol 4:2210–2229. https://doi.org/10.1039/c4cy00327f

    Article  CAS  Google Scholar 

  46. Lillebø A, Håvik S, Blekkan EA, Holmen A (2013) Fischer–Tropsch Synthesis on SiC-supported cobalt catalysts. Top Catal 56:730–736. https://doi.org/10.1007/s11244-013-0032-3

    Article  CAS  Google Scholar 

  47. Lacroix M, Dreibine L, De Tymowski B et al (2011) Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer–Tropsch Synthesis catalyst. Appl Catal A Gen 397:62–72. https://doi.org/10.1016/j.apcata.2011.02.012

    Article  CAS  Google Scholar 

  48. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744. https://doi.org/10.1021/cr050972v

    Article  CAS  PubMed  Google Scholar 

  49. Jones RD, Bartholomew CH (1988) Improved flow technique for measurement of hydrogen chemisorption on metal catalysts. Appl Catal 39:77–88. https://doi.org/10.1016/S0166-9834(00)80940-9

    Article  CAS  Google Scholar 

  50. Reuel RC, Bartholomew CH (1984) The stoichiometries of H2 and CO adsorptions on cobalt: Effects of support and preparation. J Catal 85:63–77. https://doi.org/10.1016/0021-9517(84)90110-6

    Article  CAS  Google Scholar 

  51. Martínez A, Prieto G, Rollán J (2009) Nanofibrous γ-Al2O3 as support for Co-based Fischer–Tropsch catalysts: Pondering the relevance of diffusional and dispersion effects on catalytic performance. J Catal 263:292–305. https://doi.org/10.1016/j.jcat.2009.02.021

    Article  CAS  Google Scholar 

  52. Albuquerque JS, Costa FO, Barbosa BVS (2019) Fischer–Tropsch Synthesis: analysis of products by Anderson–Schulz–Flory distribution using promoted cobalt catalyst. Catal Letters 149:831–839. https://doi.org/10.1007/s10562-019-02655-4

    Article  CAS  Google Scholar 

  53. Uykun D, Baranak M, Ataç Ö, Atakül H (2018) Effect of the promoter presence in catalysts on the compositions of Fischer – Tropsch synthesis products. J Ind Eng Chem 66:298–310. https://doi.org/10.1016/j.jiec.2018.05.044

    Article  CAS  Google Scholar 

  54. Aluha J, Abatzoglou N (2017) Promotional effect of Mo and Ni in plasma-synthesized Co–Fe/C bimetallic nano-catalysts for Fischer–Tropsch Synthesis. J Ind Eng Chem 50:199–212. https://doi.org/10.1016/j.jiec.2017.02.018

    Article  CAS  Google Scholar 

  55. Mojarad BS, Nourbakhsh A, Kahrizsangi RE et al (2015) Synthesis of nanostructured SiC by magnesiothermal reduction of silica from zeolite ZSM-5 and carbon: The effect of carbons from different sources. Ceram Int 41:5287–5293. https://doi.org/10.1016/j.ceramint.2014.12.007

    Article  CAS  Google Scholar 

  56. Gao PC, Lei Y, Cardozo Pérez AF et al (2011) New topotactic synthetic route to mesoporous silicon carbide. J Mater Chem 21:15798–15805. https://doi.org/10.1039/c1jm12457a

    Article  CAS  Google Scholar 

  57. Prieto G, Martínez A, Murciano R, Arribas MA (2009) Cobalt supported on morphologically tailored SBA-15 mesostructures: The impact of pore length on metal dispersion and catalytic activity in the Fischer–Tropsch synthesis. Appl Catal A Gen 367:146–156. https://doi.org/10.1016/j.apcata.2009.08.003

    Article  CAS  Google Scholar 

  58. Osakoo N, Henkel R, Loiha S et al (2014) Effect of support morphology and Pd promoter on Co/SBA-15 for Fischer–Tropsch Synthesis. Catal Commun 56:168–173. https://doi.org/10.1016/j.catcom.2014.07.016

    Article  CAS  Google Scholar 

  59. Zhao B, Zhang H, Tao H et al (2011) Low temperature synthesis of mesoporous silicon carbide via magnesiothermic reduction. Mater Lett 65:1552–1555. https://doi.org/10.1016/j.matlet.2011.02.075

    Article  CAS  Google Scholar 

  60. Saeedifar Z, Nourbakhsh AA, Kalbasi RJ, Karamian E (2013) Low-temperature magnesiothermic synthesis of mesoporous silicon carbide from an MCM-48/polyacrylamide nanocomposite precursor. J Mater Sci Technol 29:255–260. https://doi.org/10.1016/j.jmst.2013.01.007

    Article  CAS  Google Scholar 

  61. Jin G, Liang P, Guo X (2003) Novel method for synthesis of silicon carbide nanowires. J Mater Sci Lett 22:767–770. https://doi.org/10.1023/A:1023780716245

    Article  CAS  Google Scholar 

  62. Korytko D, Gryn S, Alekseev S et al (2016) Mesoporous silicon carbide: Via nanocasting of Ludox® xerogel. RSC Adv 6:108828–108839. https://doi.org/10.1039/c6ra21972a

    Article  CAS  Google Scholar 

  63. Alekseev SA, Korytko DM, Gryn SV et al (2014) Silicon carbide with uniformly sized spherical mesopores from butoxylated silica nanoparticles template. J Phys Chem C 118:23745–23750. https://doi.org/10.1021/jp5064534

    Article  CAS  Google Scholar 

  64. Zhang J, Chen J, Ren J et al (2003) Support effect of Co/Al2O3 catalysts for Fischer–Tropsch Synthesis. Fuel 82:581–586. https://doi.org/10.1016/S0016-2361(02)00331-9

    Article  CAS  Google Scholar 

  65. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60. https://doi.org/10.1016/S0926-860X(00)00843-7

    Article  CAS  Google Scholar 

  66. Yuan Y, Huang S, Wang H et al (2017) Monodisperse nano-Fe3O4 on α-Al2O3 catalysts for Fischer–Tropsch Synthesis to lower olefins: Promoter and size effects. ChemCatChem 9:3144–3152. https://doi.org/10.1002/cctc.201700792

    Article  CAS  Google Scholar 

  67. Curtis V, Nicolaides CP, Coville NJ et al (1999) The effect of sulfur on supported cobalt Fischer–Tropsch catalysts. Catal Today 49:33–40. https://doi.org/10.1016/S0920-5861(98)00405-2

    Article  CAS  Google Scholar 

  68. Díaz JA, Calvo-Serrano M, De La Osa AR et al (2014) β-Silicon carbide as a catalyst support in the Fischer–Tropsch Synthesis: Influence of the modification of the support by a pore agent and acidic treatment. Appl Catal A Gen 475:82–89. https://doi.org/10.1016/j.apcata.2014.01.021

    Article  CAS  Google Scholar 

  69. Su J, Gao B, Chen Z et al (2016) Large-scale synthesis and mechanism of β-SiC nanoparticles from rice husks by low-temperature magnesiothermic reduction. ACS Sustain Chem Eng 4:6600–6607. https://doi.org/10.1021/acssuschemeng.6b01483

    Article  CAS  Google Scholar 

  70. Han J, Xiong Z, Zhang Z et al (2018) The Influence of texture on Co/SBA–15 catalyst performance for Fischer–Tropsch Synthesis. Catalysts 8:661. https://doi.org/10.3390/catal8120661

    Article  CAS  Google Scholar 

  71. Pestman R, Chen W, Hensen E (2019) Insight into the Rate-determining step and active sites in the Fischer–Tropsch reaction over cobalt catalysts. ACS Catal 9:4189–4195. https://doi.org/10.1021/acscatal.9b00185

    Article  CAS  Google Scholar 

  72. Borg O, Eri S, Blekkan EA et al (2007) Fischer–Tropsch Synthesis over alpha-alumina-supported cobalt catalysts: Effect of support variables. J Catal 248:89–100. https://doi.org/10.1016/j.jcat.2007.03.008

    Article  CAS  Google Scholar 

  73. Potoczna-Petru D, Kȩpiński L (2001) Reduction study of Co3O4 model catalyst by electron microscopy. Catal Lett 73:41–46. https://doi.org/10.1023/A:100902220

    Article  CAS  Google Scholar 

  74. Zhong M, Guo Y, Wang J et al (2019) The Fischer–Tropsch Synthesis performance over cobalt supported on silicon-based materials: The effect of thermal conductivity of the support. Catal Sci Technol 9:3482–3492. https://doi.org/10.1039/c9cy00578a

    Article  CAS  Google Scholar 

  75. Peng X, Cheng K, Kang J et al (2015) Impact of hydrogenolysis on the selectivity of the Fischer–Tropsch Synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angew Chemie Int Ed 54:4553–4556

    Article  CAS  Google Scholar 

  76. Bezemer GL, Bitter JH, Kuipers HPCE et al (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964. https://doi.org/10.1021/ja058282w

    Article  CAS  PubMed  Google Scholar 

  77. Iglesia E, Soled SL, Fiato RA (1992) Fischer–Tropsch Synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal 137:212–224

    Article  CAS  Google Scholar 

  78. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. The authors are grateful to INT (Instituto Nacional de Tecnologia) for scanning electron microscopy analyses. We would like to dedicate this work to the memory of Prof. Victor Teixeira da Silva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Westphalen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 1307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westphalen, G., Baldanza, M.A.S., de Almeida, A.J. et al. Improvement of C–C Coupling Using SiC as a Support of Cobalt Catalysts in Fischer Tropsch Synthesis. Catal Lett 152, 2056–2066 (2022). https://doi.org/10.1007/s10562-021-03775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03775-6

Keywords

Navigation