Skip to main content
Log in

Influence of a Zeolite-Based Cascade Layer on Fischer–Tropsch Fuels Production over Silicon Carbide Supported Cobalt Catalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this work, selective production of middle distillate from synthesis gas was conducted over a cascade catalytic system in a single unit. Co/β-SiC was chosen as an efficient Fischer–Tropsch synthesis (FTS) catalyst (first layer) while proton-type H-ZSM-5 and H-βeta zeolites (second layer) were tested for the subsequent hydroprocessing to produce middle distillate from waxes. Moreover, in order to compare, a prior FTS reference experiment was performed. Catalytic materials were characterized by means of Atomic Absorption, Thermogravimetric analysis, X-Ray diffraction, N2 adsorption–desorption, Temperature-Programmed Reduction and Temperature-Programmed Desorption. From catalytic results, a distinguishable enhancement of commercial fuels products was observed under the proposed cascade operation compared to the stand-alone configuration or physical mixture. Regardless the zeolite type, FTS over Co/β-SiC with subsequent upgrading was demonstrated to result in the complete elimination of waxes, solving the main weakness of a conventional fixed-bed reactor. Moreover, apart from a selective production of gasoline, the proposed concept provided a significant enhancement of both kerosene and diesel yields, particularly when zeolite H-βeta is incorporated to the cascade system due to its mild acidity and larger pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leckel D (2009) Diesel production from Fischer–Tropsch: the past, the present, and new concepts. Energy Fuels 23(5):2342–2358. doi:10.1021/ef900064c

    Article  CAS  Google Scholar 

  2. Wang Y (2011) Development of highly selective Fischer–Tropsch catalysts for production of diesel- and gasoline-range hydrocarbons. In: ACS National Meeting Book of Abstracts

  3. Liu G, Larson ED, Williams RH, Kreutz TG, Guo X (2011) Making Fischer–Tropsch fuels and electricity from coal and biomass: performance and cost analysis. Energy Fuels 25(1):415–437. doi:10.1021/ef101184e

    Article  CAS  Google Scholar 

  4. Sartipi S, Makkee M, Kapteijn F, Gascon J (2014) Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review. Catal Sci Technol 4(4):893–907. doi:10.1039/c3cy01021j

    Article  CAS  Google Scholar 

  5. Freitez A, Pabst K, Kraushaar-Czarnetzki B, Schaub G (2011) Single-stage Fischer–Tropsch synthesis and hydroprocessing: the hydroprocessing performance of Ni/ZSM-5/γ-Al2O3 under Fischer–Tropsch conditions. Ind Eng Chem Res 50(24):13732–13741. doi:10.1021/ie201913s

    Article  CAS  Google Scholar 

  6. Sun B, Yu G, Lin J, Xu K, Pei Y, Yan S, Qiao M, Fan K, Zhang X, Zong B (2012) A highly selective Raney Fe@HZSM-5 Fischer–Tropsch synthesis catalyst for gasoline production: one-pot synthesis and unexpected effect of zeolites. Catal Sci Technol 2(8):1625–1629. doi:10.1039/c2cy20155k

    Article  CAS  Google Scholar 

  7. Cheng K, Kang J, Huang S, You Z, Zhang Q, Ding J, Hua W, Lou Y, Deng W, Wang Y (2012) Mesoporous beta zeolite-supported ruthenium nanoparticles for selective conversion of synthesis gas to C5–C11 isoparaffins. ACS Catal 2(3):441–449. doi:10.1021/cs200670j

    Article  CAS  Google Scholar 

  8. de la Osa AR, de Lucas A, Sánchez-Silva L, Díaz-Maroto J, Valverde JL, Sánchez P (2012) Performing the best composition of supported Co/SiC catalyst for selective FTS diesel production. Fuel 95(0):587–598. doi:10.1016/j.fuel.2011.11.002

    Article  Google Scholar 

  9. de Tymowski B, Liu Y, Meny C, Lefèvre C, Begin D, Nguyen P, Pham C, Edouard D, Luck F, Pham-Huu C (2012) Co–Ru/SiC impregnated with ethanol as an effective catalyst for the Fischer–Tropsch synthesis. Appl Catal A 419–420(0):31–40. doi:10.1016/j.apcata.2012.01.004

    Article  Google Scholar 

  10. Díaz JA, Calvo-Serrano M, de la Osa AR, García-Minguillán AM, Romero A, Giroir-Fendler A, Valverde JL (2014) β-silicon carbide as a catalyst support in the Fischer–Tropsch synthesis: Influence of the modification of the support by a pore agent and acidic treatment. Appl Catal A 475(0):82–89. doi:10.1016/j.apcata.2014.01.021

    Article  Google Scholar 

  11. Lacroix M, Dreibine L, de Tymowski B, Vigneron F, Edouard D, Bégin D, Nguyen P, Pham C, Savin-Poncet S, Luck F, Ledoux M-J, Pham-Huu C (2011) Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer–Tropsch synthesis catalyst. Appl Catal A 397(1–2):62–72. doi:10.1016/j.apcata.2011.02.012

    Article  CAS  Google Scholar 

  12. Ledoux MJ, Pham-Huu C (2001) Silicon carbide a novel catalyst support for heterogeneous catalysis. CATTECH 5(4):226–246. doi:10.1023/a:1014092930183

    Article  CAS  Google Scholar 

  13. Lee JS, Jung JS, Moon DJ (2015) The Effect of cobalt loading on Fischer Tropsch synthesis over silicon carbide supported catalyst. J Nanosci Nanotechnol 15(1):396–399. doi:10.1166/jnn.2015.8350

    Article  CAS  Google Scholar 

  14. Lillebø A, Håvik S, Blekkan EA, Holmen A (2013) Fischer–Tropsch synthesis on SiC-supported cobalt catalysts. Top Catal 56(9–10):730–736. doi:10.1007/s11244-013-0032-3

    Article  Google Scholar 

  15. Zhang Q, Kang J, Wang Y (2010) Development of novel catalysts for Fischer–Tropsch synthesis: tuning the product selectivity. ChemCatChem 2(9):1030–1058. doi:10.1002/cctc.201000071

    Article  CAS  Google Scholar 

  16. Ge Q, Li X, Kaneko H, Fujimoto K (2007) Direct synthesis of LPG from synthesis gas over Pd–Zn–Cr/Pd-β hybrid catalysts. J Mol Catal A 278(1–2):215–219. doi:10.1016/j.molcata.2007.09.008

    Article  CAS  Google Scholar 

  17. Martínez A, Rollán J, Arribas MA, Cerqueira HS, Costa AF, S.-Aguiar EF (2007) A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer–Tropsch catalysts. J Catal 249(2):162–173. doi:10.1016/j.jcat.2007.04.012

    Article  Google Scholar 

  18. Zhang S, Xu R, Durham E, Roberts CB (2014) Middle distillates production via Fischer–Tropsch synthesis with integrated upgrading under supercritical conditions. AlChE J 60(7):2573–2583. doi:10.1002/aic.14493

    Article  CAS  Google Scholar 

  19. Pabst K, Kraushaar-Czarnetzki B, Schaub G (2013) Combination of Fischer–Tropsch synthesis and hydroprocessing in a single-stage reactor. Part II. Effect of catalyst combinations. Ind Eng= Chem Res 52(26):8988–8995. doi:10.1021/ie3030483

    Article  CAS  Google Scholar 

  20. de la Osa AR, De Lucas A, Díaz-Maroto J, Romero A, Valverde JL, Sánchez P (2012) FTS fuels production over different Co/SiC catalysts. Catal Today 187(1):173–182. doi:10.1016/j.cattod.2011.12.029

    Article  Google Scholar 

  21. Ma T, Imai H, Shige T, Sugio T, Li X (2015) Synthesis of hydrocarbons from H2-deficient syngas in Fischer–Tropsch synthesis over co-based catalyst coupled with fe-based catalyst as water-gas shift reaction. J Nanomater 2015:10. doi:10.1155/2015/268121

    Google Scholar 

  22. Ma T, Imai H, Yamawaki M, Terasaka K, Li X (2014) Selective synthesis of gasoline-ranged hydrocarbons from syngas over hybrid catalyst consisting of metal-loaded ZSM-5 coupled with copper-zinc oxide. Catalysts 4(2):116

    Article  Google Scholar 

  23. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  CAS  Google Scholar 

  24. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380

    Article  CAS  Google Scholar 

  25. Cheng LS, Ralph TY (1994) Improved Horvath-Kawazoe equations including spherical pore models for calculating micropore size distribution. Chem Eng Sci 49(16):2599–2609. doi:10.1016/0009-2509(94)E0054-T

    Article  CAS  Google Scholar 

  26. Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Study of the effect of water on alumina supported cobalt Fischer–Tropsch catalysts. Appl Catal A 186(1–2):169–188. doi:10.1016/S0926-860X(99)00171-4

    Article  CAS  Google Scholar 

  27. Scherrer P (1918). Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen 2:98

  28. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233(1–2):263–281. doi:10.1016/S0926-860X(02)00195-3

    Article  CAS  Google Scholar 

  29. Storsæter S, Tøtdal B, Walmsley JC, Tanem BS, Holmen A (2005) Characterization of alumina-, silica-, and titania-supported cobalt Fischer–Tropsch catalysts. J Catal 236(1):139–152. doi:10.1016/j.jcat.2005.09.021

    Article  Google Scholar 

  30. Yuan X, Lü J, Yan X, Hu L, Xue Q (2011) Preparation of ordered mesoporous silicon carbide monoliths via preceramic polymer nanocasting. Microporous Mesoporous Mater 142(2–3):754–758. doi:10.1016/j.micromeso.2011.01.014

    Article  CAS  Google Scholar 

  31. Jacobson NS, Myers DL (2011) Active oxidation of SiC. Oxid Met 75(1–2):1–25. doi:10.1007/s11085-010-9216-4

    Article  CAS  Google Scholar 

  32. Lee S-H, Yun S-M, Kim S, Park S-J, Lee Y-S (2010) Characterization of nanoporous β-SiC fiber complex prepared by electrospinning and carbothermal reduction. Res Chem Intermed 36(6–7):731–742. doi:10.1007/s11164-010-0175-9

    Article  CAS  Google Scholar 

  33. Ledoux MJ, Crouzet C, Pham-Huu C, Turines V, Kourtakis K, Mills PL, Lerou JJ (2001) High-yield butane to maleic anhydride direct oxidation on vanadyl pyrophosphate supported on heat-conductive materials: β-SiC, Si3N4, and BN. J Catal 203(2):495–508. doi:10.1006/jcat.2001.3344

    Article  CAS  Google Scholar 

  34. Rane S, Borg Ø, Yang J, Rytter E, Holmen A (2010) Effect of alumina phases on hydrocarbon selectivity in Fischer–Tropsch synthesis. Appl Catal A 388(1–2):160–167. doi:10.1016/j.apcata.2010.08.038

    Article  CAS  Google Scholar 

  35. Triantafyllidis KS, Nalbandian L, Trikalitis PN, Ladavos AK, Mavromoustakos T, Nicolaides CP (2004) Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite-based materials. Microporous Mesoporous Mater 75(1–2):89–100. doi:10.1016/j.micromeso.2004.07.016

    Article  CAS  Google Scholar 

  36. Mavrodinova VP (1998) Solid-state ion exchange in beta zeolites. I: alkaline chlorides/NH4-β. Microporous Mesoporous Mater 24(1–3):1–8. doi:10.1016/S1387-1811(98)00138-3

    Article  CAS  Google Scholar 

  37. Rouquerol J, Avnir D, Everett DH, Fairbridge C, Haynes M, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Guidelines for the characterization of porous solids. In: Rouquerol FR-RKSWS J, Unger KK (eds) Studies in surface science and catalysis, vol 87. Elsevier, Amsterdam, pp 1–9. doi:10.1016/S0167-2991(08)63059-1

    Google Scholar 

  38. Kolasinski KW (ed) (2007) Surface science foundations of catalysis and nanoscience. Wiley, Chichester

    Google Scholar 

  39. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J (1985) Pure Appl Chem 57:16

    Article  Google Scholar 

  40. Camblor MA, Corma A, Valencia S (1998) Characterization of nanocrystalline zeolite Beta. Microporous Mesoporous Mater 25(1–3):59–74. doi:10.1016/S1387-1811(98)00172-3

    Article  CAS  Google Scholar 

  41. Arnoldy P, Moulijn JA (1985) Temperature-programmed reduction of CoOAI2O3 catalysts. J Catal 93(1):38–54. doi:10.1016/0021-9517(85)90149-6

    Article  CAS  Google Scholar 

  42. Bechara R, Balloy D, Dauphin J-Y, Grimblot J (1999) Influence of the characteristics of γ-aluminas on the dispersion and the reducibility of supported cobalt catalysts. Chem Mater 11(7):1703–1711. doi:10.1021/cm981015n

    Article  CAS  Google Scholar 

  43. Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) Study of Pt-promoted cobalt CO hydrogenation catalysts. J Catal 156(1):85–95. doi:10.1006/jcat.1995.1234

    Article  CAS  Google Scholar 

  44. Rodrigues EL, Bueno JMC (2002) Co/SiO2 catalysts for selective hydrogenation of crotonaldehyde II: Influence of the Co surface structure on selectivity. Appl Catal A 232(1–2):147–158. doi:10.1016/s0926-860x(02)00090-x

    Article  CAS  Google Scholar 

  45. de la Osa A, Romero A, Dorado F, Valverde J, Sánchez P (2016) Influence of cobalt precursor on efficient production of commercial fuels over FTS Co/SiC Catalyst. Catalysts 6(7):98

    Article  Google Scholar 

  46. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2004) High efficiency steam reforming of ethanol by cobalt-based catalysts. J Power Sources 134(1):27–32. doi:10.1016/j.jpowsour.2004.01.052

    Article  CAS  Google Scholar 

  47. Zhou W, Chen J-G, Fang K-G, Sun Y-H (2006) The deactivation of Co/SiO2 catalyst for Fischer–Tropsch synthesis at different ratios of H2 to CO. Fuel Process Technol 87 (7):609–616. doi:10.1016/j.fuproc.2006.01.008

    Article  CAS  Google Scholar 

  48. Solomonik IG, Gryaznov KO, Skok VF, Mordkovich VZ (2015) Formation of surface cobalt structures in SiC-supported Fischer–Tropsch catalysts. RSC Adv 5(96):78586–78597. doi:10.1039/c5ra11853k

    Article  CAS  Google Scholar 

  49. Nguyen P, Pham C (2011) Innovative porous SiC-based materials: from nanoscopic understandings to tunable carriers serving catalytic needs. Appl Catal A 391(1–2):443–454. doi:10.1016/j.apcata.2010.07.054

    Article  CAS  Google Scholar 

  50. Xiong H, Zhang Y, Liew K, Li J (2008) Fischer–Tropsch synthesis: the role of pore size for Co/SBA-15 catalysts. J Mol Catal A 295(1–2):68–76. doi:10.1016/j.molcata.2008.08.017

    Article  CAS  Google Scholar 

  51. Parrillo DJ, Lee C, Gorte RJ (1994) Heats of adsorption for ammonia and pyridine in H-ZSM-5: evidence for identical Brønsted-acid sites. Appl Catal A 110(1):67–74. doi:10.1016/0926-860X(94)80106-1

    Article  CAS  Google Scholar 

  52. Komvokis VG, Karakoulia S, Iliopoulou EF, Papapetrou MC, Vasalos IA, Lappas AA, Triantafyllidis KS (2012) Upgrading of Fischer–Tropsch synthesis bio-waxes via catalytic cracking: Effect of acidity, porosity and metal modification of zeolitic and mesoporous aluminosilicate catalysts. Catal Today 196(1):42–55. doi:10.1016/j.cattod.2012.06.029

    Article  CAS  Google Scholar 

  53. Gorte RJ (1999) What do we know about the acidity of solid acids?. Catal Lett 62(1):1–13

    Article  CAS  Google Scholar 

  54. Putluru SSR, Riisager A, Fehrmann R (2011) Alkali resistant Cu/zeolite deNOx catalysts for fuel gas cleaning in biomass fired applications. Appl Catal B 101(3–4):183–188. doi:10.1016/j.apcatb.2010.09.015

    Article  CAS  Google Scholar 

  55. Akah AC, Nkeng G, Garforth AA (2007) The role of Al and strong acidity in the selective catalytic oxidation of NH3 over Fe-ZSM-5. Appl Catal B 74(1–2):34–39. doi:10.1016/j.apcatb.2007.01.009

    Article  CAS  Google Scholar 

  56. Hidalgo CV, Itoh H, Hattori T, Niwa M, Murakami Y (1984) Measurement of the acidity of various zeolites by temperature-programmed desorption of ammonia. J Catal 85(2):362–369. doi:10.1016/0021-9517(84)90225-2

    Article  CAS  Google Scholar 

  57. Bao A, Liew K, Li J (2009) Fischer–Tropsch synthesis on CaO-promoted Co/Al2O3 catalysts. J Mol Catal A 304(1–2):47–51. doi:10.1016/j.molcata.2009.01.022

    Article  CAS  Google Scholar 

  58. de la Osa AR, De Lucas A, Valverde JL, Romero A, Monteagudo I, Coca P, Sánchez P (2011) Influence of alkali promoters on synthetic diesel production over Co catalyst. Catal Today 167(1):96–106. doi:10.1016/j.cattod.2010.11.064

    Article  Google Scholar 

  59. Dry ME, Oosthuizen GJ (1968) The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer–Tropsch synthesis. J Catal 11(1):18–24. doi:10.1016/0021-9517(68)90004-3

    Article  CAS  Google Scholar 

  60. de la Osa AR, De Lucas A, Romero A, Valverde JL, Sánchez P (2011) Influence of the catalytic support on the industrial Fischer–Tropsch synthetic diesel production. Catal Today 176(1):298–302. doi:10.1016/j.cattod.2010.12.010

    Article  Google Scholar 

  61. Yu L, Liu X, Fang Y, Wang C, Sun Y (2013) Highly active Co/SiC catalysts with controllable dispersion and reducibility for Fischer–Tropsch synthesis. Fuel 112(0):483–488. doi:10.1016/j.fuel.2013.04.072

    Article  CAS  Google Scholar 

  62. Ernst B, Bensaddik A, Hilaire L, Chaumette P, Kiennemann A (1998) Study on a cobalt silica catalyst during reduction and Fischer–Tropsch reaction: In situ EXAFS compared to XPS and XRD. Catal Today 39(4):329–341. doi:10.1016/S0920-5861(97)00124-7

    Article  CAS  Google Scholar 

  63. Khodakov AY, Lynch J, Bazin D, Rebours B, Zanier N, Moisson B, Chaumette P (1997) Reducibility of cobalt species in silica-supported Fischer–Tropsch catalysts. J Catal 168(1):16–25. doi:10.1006/jcat.1997.1573

    Article  CAS  Google Scholar 

  64. Ghampson IT, Newman C, Kong L, Pier E, Hurley KD, Pollock RA, Walsh BR, Goundie B, Wright J, Wheeler MC, Meulenberg RW, Desisto WJ, Frederick BG, Austin RN (2010) Effects of pore diameter on particle size, phase, and turnover frequency in mesoporous silica supported cobalt Fischer–Tropsch catalysts. Appl Catal A 388(1–2):57–67. doi:10.1016/j.apcata.2010.08.028

    Article  CAS  Google Scholar 

  65. Song D, Li J (2006) Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. J Mol Catal A 247(1–2):206–212. doi:10.1016/j.molcata.2005.11.021

    Article  CAS  Google Scholar 

  66. Egiebor NO, Cooper WC, Wojciechowski BW (1989) Synthesis of motor fuels from HY-zeolite supported Fischer–Tropsch iron catalysts. Appl Catal 55 (1):47–64. doi:10.1016/S0166-9834(00)82316-7

    Article  CAS  Google Scholar 

  67. Martínez A, López C (2005) The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer–Tropsch products over hybrid catalysts. Appl Catal A 294(2):251–259. doi:10.1016/j.apcata.2005.07.038

    Article  Google Scholar 

  68. Karre AV, Kababji A, Kugler EL, Dadyburjor DB (2013) Effect of time on stream and temperature on upgraded products from Fischer–Tropsch synthesis when zeolite is added to iron-based activated-carbon-supported catalyst. Catal Today 214:82–89. doi:10.1016/j.cattod.2013.04.010

    Article  CAS  Google Scholar 

  69. Botes FG, Böhringer W (2004) The addition of HZSM-5 to the Fischer–Tropsch process for improved gasoline production. Appl Catal A 267(1–2):217–225. doi:10.1016/j.apcata.2004.03.006

    Article  CAS  Google Scholar 

  70. Oukaci R, Wu JCS, Goodwin JG (1988) Effect of SiAl ratio on secondary reactions during CO hydrogenation on zeolite-supported metal catalysts. J Catal 110(1):47–57. doi:10.1016/0021-9517(88)90296-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sicat catalyst is gratefully acknowledged for providing support sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. de la Osa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Osa, A.R., Romero, A., Díez-Ramírez, J. et al. Influence of a Zeolite-Based Cascade Layer on Fischer–Tropsch Fuels Production over Silicon Carbide Supported Cobalt Catalyst. Top Catal 60, 1082–1093 (2017). https://doi.org/10.1007/s11244-017-0792-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0792-2

Keywords

Navigation