Skip to main content
Log in

Fischer–Tropsch Synthesis: Analysis of Products by Anderson–Schulz–Flory Distribution Using Promoted Cobalt Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work aims to evaluate formed products according to the Anderson-Schulz- Flory (ASF) distribution in Fischer-Tropsch synthesis. The crystalline phases of cerium and cobalt were confirmed in the mesoporous structure of the SBA-15 molecular sieve. The ASF distribution model showed a distribution of products with two chain growth probabilities, α1 and α2 for Co/Ce/SBA-15 catalyst. The maximum production of hydrocarbons was in the range of light olefins, followed by gasoline.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bezemer GL, Bitter JH, Kuipers HPCE et al (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. Am Chem Soc 128(12):3956–3964

    Article  CAS  Google Scholar 

  2. Vo D-VN, Arcotumapathy V, Abdullah B et al (2013) Evaluation of Ba-promoted Mo carbide catalyst for Fischer–Tropsch synthesis. J Chem Technol Biotechnol 88(7):1358–1363

    Article  CAS  Google Scholar 

  3. Dry ME (2001) High quality diesel via the Fischer–Tropsch process—a review. J Chem Technol Biotechnol 77(1):43–50

    Article  CAS  Google Scholar 

  4. Griboval-Constant A, Butel A, Ordomskya VV et al (2014) Cobalt and iron species in alumina supported bimetallic catalysts for Fischer–Tropsch reaction. Appl Catal A 481:116–126

    Article  CAS  Google Scholar 

  5. Dai X, Yu C, Li R (2007) Deactivation of CeO2-promoted Co/SiO2 Fischer–Tropsch catalysts. Chin J Catal 28(12):1047–1052

    Article  CAS  Google Scholar 

  6. Bartolini M, Molina J, Alvarez J et al (2015) Effect of the porous structure of the support on hydrocarbon distribution in the Fischer–Tropsch reaction. J Power Sources 285:1–11

    Article  CAS  Google Scholar 

  7. Huang J, Qian W, Zhang H et al (2018) Influences of ordered mesoporous silica on product distribution over Nb-promoted cobalt catalyst for Fischer–Tropsch synthesis. Fuel 216:843–851

    Article  CAS  Google Scholar 

  8. González GP, Martínez A, Murciano R et al (2009) Cobalt supported on morphologically tailored SBA-15 mesostructures: the impact of pore length on metal dispersion and catalytic activity in the Fischer–Tropsch synthesis. Appl Catal A 367(1–2):146–156

    Google Scholar 

  9. Pardo-Tarifa F, Cabrera S, Sanchez-Dominguez M et al (2017) Ce-promoted Co/Al2O3 catalysts for Fischer–Tropsch synthesis. Int J Hydrogen Energy 42(10):9754–9765

    Article  CAS  Google Scholar 

  10. Dai X, Yu C, Li R et al (2006) Role of CeO2 promoter in Co/SiO2 catalyst for Fischer–Tropsch synthesis. Chin J Catal 27(10):904–910

    Article  CAS  Google Scholar 

  11. He L, Teng B, Zhang Y et al (2015) Development of composited rare-earth promoted cobalt-based Fischer–Tropsch synthesis catalysts with high activity and selectivity. Appl Catal A 505:276–283

    Article  CAS  Google Scholar 

  12. Zhang X, Su H, Zhang Y et al (2016) Effect of CeO2 promotion on the catalytic performance of Co/ZrO2 catalysts for Fischer–Tropsch synthesis. Fuel 184:162–168

    Article  CAS  Google Scholar 

  13. Johnson GR, Bell AT (2016) Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts. J Catal 338:250–264

    Article  CAS  Google Scholar 

  14. Yang R, Zhou L, Gao J et al (2017) Effects of experimental operations on the Fischer–Tropsch product distribution. Catal Today 298:77–88

    Article  CAS  Google Scholar 

  15. Puskas I, Hurlbut RS (2003) Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products. Catal Today 84(1–2):99–109

    Article  CAS  Google Scholar 

  16. Cheng J, Song T, Hu P et al (2008) A density functional theory study of the α-olefin selectivity in Fischer–Tropsch synthesis. J Catal 255(1):20–28

    Article  CAS  Google Scholar 

  17. Madon RJ, Iglesia E (1993) The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium catalysts. J Catal 139(2):576–590

    Article  CAS  Google Scholar 

  18. Zhao D, Feng J, Hou Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279(5350):548–552

    Article  CAS  Google Scholar 

  19. Zhao D, Hou Q, Feng J et al (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. JACS 120(24):6024–6036

    Article  CAS  Google Scholar 

  20. González GP, Concepción P, Murciano R al (2013) The impact of pre-reduction thermal history on the metal surface topology and site-catalytic activity of Co/SiO2 Fischer–Tropsch catalysts. J Catal 302:37–48

    Article  CAS  Google Scholar 

  21. Blasco T, Botella P, Concepción P et al (2004) Selective oxidation of propane to acrylic acid on K-doped MoVSbO catalysts: catalyst characterization and catalytic performance. J Catal 228(2):362–373

    Article  CAS  Google Scholar 

  22. Martínez A, González GP, Rollán J (2009) Nanofibrous γ-Al2O3 as support for Co-based Fischer–Tropsch catalysts: pondering the relevance of diffusional and dispersion effects on catalytic performance. J Catal 263(2):292–305

    Article  CAS  Google Scholar 

  23. González GP (2010) Requerimientos físico-químicos y estructurales en catalizadores avanzados para la conversión de gas de síntesis. Polytechnic University of Valencia, Valencia

    Book  Google Scholar 

  24. Sousa BV (2009) Desenvolvimento de catalisadores (Co/MCM-41) destinados a reação de Fischer–Tropsch. Federal Universitiy of Campina Grande, Campina Grande

    Google Scholar 

  25. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  26. Borg O, Eri S, Blekkan EA et al (2007) Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: effect of support variables. J Catal 248(1):89–100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported with a partnership between Department of Chemical Engineering - Federal University of Campina Grande and Higher Council for Scientific Research - Polytechnic University of Valencia. The scholarship was awarded by Coordination for the Improvement of Higher Level Education a Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas S. Albuquerque.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albuquerque, J.S., Costa, F.O. & Barbosa, B.V.S. Fischer–Tropsch Synthesis: Analysis of Products by Anderson–Schulz–Flory Distribution Using Promoted Cobalt Catalyst. Catal Lett 149, 831–839 (2019). https://doi.org/10.1007/s10562-019-02655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02655-4

Keywords

Navigation