Skip to main content

Advertisement

Log in

Mesenchymal–epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

As yet, there is no cure for metastatic breast cancer. Historically, considerable research effort has been concentrated on understanding the processes of metastasis, how a primary tumour locally invades and systemically disseminates using the phenotypic switching mechanism of epithelial to mesenchymal transition (EMT); however, much less is understood about how metastases are then formed. Breast cancer metastases often look (and may even function) as ‘normal’ breast tissue, a bizarre observation against the backdrop of the organ structure of the lung, liver, bone or brain. Mesenchymal to epithelial transition (MET), the opposite of EMT, has been proposed as a mechanism for establishment of the metastatic neoplasm, leading to questions such as: Can MET be clearly demonstrated in vivo? What factors cause this phenotypic switch within the cancer cell? Are these signals/factors derived from the metastatic site (soil) or expressed by the cancer cells themselves (seed)? How do the cancer cells then grow into a detectable secondary tumour and further disseminate? And finally—Can we design and develop therapies that may combat this dissemination switch? This review aims to address these important questions by evaluating long-standing paradigms and novel emerging concepts in the field of epithelial mesencyhmal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.

    Article  Google Scholar 

  2. Desantis, C., Siegel, R., Bandi, P., & Jemal, A. (2011). Breast cancer statistics, 2011. CA: A Cancer Journal for Clinicians, 61, 408–418.

    Article  Google Scholar 

  3. Jones, S. E. (2008). Metastatic breast cancer: the treatment challenge. Clinical Breast Cancer, 8, 224–233.

    Article  PubMed  CAS  Google Scholar 

  4. Lopez-Tarruella, S., & Martin, M. (2009). Recent advances in systemic therapy: advances in adjuvant systemic chemotherapy of early breast cancer. Breast Cancer Research, 11, 204.

    Article  PubMed  Google Scholar 

  5. Fisher, B., Jeong, J. H., Bryant, J., et al. (2004). Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet, 364, 858–868.

    Article  PubMed  CAS  Google Scholar 

  6. Early Breast Cancer Trialists' Collaborative Group. (1998). Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet, 352, 930–942.

    Article  Google Scholar 

  7. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  8. Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80, 1529–1537.

    Article  PubMed  CAS  Google Scholar 

  9. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.

    Article  PubMed  CAS  Google Scholar 

  10. Weidner, N., Folkman, J., Pozza, F., et al. (1992). Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. Journal of the National Cancer Institute, 84, 1875–1887.

    Article  PubMed  CAS  Google Scholar 

  11. Folkman, J., & Shing, Y. (1992). Angiogenesis. Journal of Biological Chemistry, 267, 10931–10934.

    PubMed  CAS  Google Scholar 

  12. Folkman, J. (1992). The role of angiogenesis in tumor growth. Seminars in Cancer Biology, 3, 65–71.

    PubMed  CAS  Google Scholar 

  13. Kiaris, H., Chatzistamou, I., Kalofoutis, C., Koutselini, H., Piperi, C., & Kalofoutis, A. (2004). Tumour-stroma interactions in carcinogenesis: basic aspects and perspectives. Molecular and Cellular Biochemistry, 261, 117–122.

    Article  PubMed  CAS  Google Scholar 

  14. Pupa, S. M., Menard, S., Forti, S., & Tagliabue, E. (2002). New insights into the role of extracellular matrix during tumor onset and progression. Journal of Cellular Physiology, 192, 259–267.

    Article  PubMed  CAS  Google Scholar 

  15. Wells, A., Chao, Y. L., Grahovac, J., Wu, Q., & Lauffenburger, D. A. (2011). Epithelial and mesenchymal phenotypic switchings modulate cell motility in metastasis. Frontiers in Bioscience, 16, 815–837.

    Article  PubMed  CAS  Google Scholar 

  16. Kienast, Y., von Baumgarten, L., Fuhrmann, M., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16, 116–122.

    Article  PubMed  CAS  Google Scholar 

  17. Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., et al. (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.

    Article  PubMed  CAS  Google Scholar 

  18. Howlett, A. R., & Bissell, M. J. (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biology, 2, 79–89.

    PubMed  CAS  Google Scholar 

  19. Jechlinger, M., Grunert, S., & Beug, H. (2002). Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling. Journal of Mammary Gland Biology and Neoplasia, 7, 415–432.

    Article  PubMed  Google Scholar 

  20. de Herreros, A. G., Peiro, S., Nassour, M., & Savagner, P. (2010). Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. Journal of Mammary Gland Biology and Neoplasia, 15, 135–147.

    Article  PubMed  Google Scholar 

  21. Creighton, C. J., Chang, J. C., & Rosen, J. M. (2010). Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 253–260.

    Article  PubMed  Google Scholar 

  22. Wang, Y., & Zhou, B. P. (2011). Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chinese Journal of Cancer, 30, 603–611.

    Article  PubMed  CAS  Google Scholar 

  23. Chao, Y. L., Shepard, C. R., & Wells, A. (2010). Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Molecular Cancer, 9, 179.

    Article  PubMed  Google Scholar 

  24. Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Research, 66, 11271–11278.

    Article  PubMed  CAS  Google Scholar 

  25. Chaffer, C. L., Thompson, E. W., & Williams, E. D. (2007). Mesenchymal to epithelial transition in development and disease. Cells, Tissues, Organs, 185, 7–19.

    Article  PubMed  Google Scholar 

  26. Hugo, H., Ackland, M. L., Blick, T., et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.

    Article  PubMed  CAS  Google Scholar 

  27. Bernards, R., & Weinberg, R. A. (2002). A progression puzzle. Nature, 418, 823.

    Article  PubMed  CAS  Google Scholar 

  28. Weinberg, R. A. (2008). Leaving home early: reexamination of the canonical models of tumor progression. Cancer Cell, 14, 283–284.

    Article  PubMed  CAS  Google Scholar 

  29. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  30. Blick, T., Hugo, H., Widodo, E., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 235–252.

    Article  PubMed  Google Scholar 

  31. Mani, S. A., Guo, W., Liao, M. J., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.

    Article  PubMed  CAS  Google Scholar 

  32. Kowalski, P. J., Rubin, M. A., & Kleer, C. G. (2003). E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Research, 5, R217–R222.

    Article  PubMed  CAS  Google Scholar 

  33. Stessels, F., Van den Eynden, G., Van der Auwera, I., et al. (2004). Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. British Journal of Cancer, 90, 1429–1436.

    Article  PubMed  CAS  Google Scholar 

  34. Chao, Y., Wu, Q., Acquafondata, M., Dhir, R., & Wells, A. (2012). Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenvironment, 5, 19–28.

    Article  PubMed  CAS  Google Scholar 

  35. Korpal, M., Ell, B. J., Buffa, F. M., et al. (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17, 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  36. Hurteau, G. J., Carlson, J. A., Spivack, S. D., & Brock, G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67, 7972–7976.

    Article  PubMed  CAS  Google Scholar 

  37. Bendoraite, A., Knouf, E. C., Garg, K. S., et al. (2010). Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecologic Oncology, 116, 117–125.

    Article  PubMed  CAS  Google Scholar 

  38. Brabletz, S., & Brabletz, T. (2010). The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Reports, 11, 670–677.

    Article  PubMed  CAS  Google Scholar 

  39. Gregory, P. A., Bracken, C. P., Smith, E., et al. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22, 1686–1698.

    Article  PubMed  CAS  Google Scholar 

  40. Burk, U., Schubert, J., Wellner, U., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–589.

    Article  PubMed  CAS  Google Scholar 

  41. Bullock, M. D., Sayan, A. E., Packham, G. K., & Mirnezami, A. H. (2012). MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biology of the Cell, 104, 3–12.

    Article  PubMed  CAS  Google Scholar 

  42. Celia-Terrassa, T., Meca-Cortes, O., Mateo, F., et al. (2012). Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. The Journal of Clinical Investigation, 122, 1849–1868.

    Article  PubMed  CAS  Google Scholar 

  43. Sporn, M. B. (1996). The war on cancer. Lancet, 347, 1377–1381.

    Article  PubMed  CAS  Google Scholar 

  44. Mettlin, C. (1999). Global breast cancer mortality statistics. CA: A Cancer Journal for Clinicians, 49, 138–144.

    Article  CAS  Google Scholar 

  45. No authors listed (2000). Breast cancer statistics. Journal of the National Cancer Institute, 92, 445.

    Google Scholar 

  46. Kamo, K., & Sobue, T. (2004). Cancer statistics digest. Mortality trend of prostate, breast, uterus, ovary, bladder and “kidney and other urinary tract” cancer in Japan by birth cohort. Japanese Journal of Clinical Oncology, 34, 561–563.

    Article  PubMed  Google Scholar 

  47. Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198, 11–26.

    PubMed  CAS  Google Scholar 

  48. Berx, G., Staes, K., van Hengel, J., et al. (1995). Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics, 26, 281–289.

    Article  PubMed  CAS  Google Scholar 

  49. Pecina-Slaus, N. (2003). Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell International, 3, 17.

    Article  PubMed  Google Scholar 

  50. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.

    Article  PubMed  CAS  Google Scholar 

  51. Wells, A., Yates, C., & Shepard, C. R. (2008). E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clinical & Experimental Metastasis, 25, 621–628.

    Article  CAS  Google Scholar 

  52. Saha, B., Chaiwun, B., Imam, S. S., et al. (2007). Overexpression of E-cadherin protein in metastatic breast cancer cells in bone. Anticancer Research, 27, 3903–3908.

    PubMed  Google Scholar 

  53. Bastid, J. (2012). EMT in carcinoma progression and dissemination: facts, unanswered questions, and clinical considerations. Cancer and Metastasis Reviews, 31, 277–283.

    Article  PubMed  Google Scholar 

  54. Wendt, M. K., Taylor, M. A., Schiemann, B. J., & Schiemann, W. P. (2011). Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Molecular Biology of the Cell, 22, 2423–2435.

    Article  PubMed  CAS  Google Scholar 

  55. Cailleau, R., Olive, M., & Cruciger, Q. V. (1978). Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro, 14, 911–915.

    Article  PubMed  CAS  Google Scholar 

  56. Brinkley, B. R., Beall, P. T., Wible, L. J., Mace, M. L., Turner, D. S., & Cailleau, R. M. (1980). Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro. Cancer Research, 40, 3118–3129.

    PubMed  CAS  Google Scholar 

  57. Thompson, E. W., Paik, S., Brunner, N., et al. (1992). Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. Journal of Cellular Physiology, 150, 534–544.

    Article  PubMed  CAS  Google Scholar 

  58. Sheikh, M. S., Shao, Z. M., Hussain, A., & Fontana, J. A. (1993). The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma. Cancer Research, 53, 3226–3228.

    PubMed  CAS  Google Scholar 

  59. Maemura, M., Akiyama, S. K., Woods, V. L., Jr., & Dickson, R. B. (1995). Expression and ligand binding of alpha 2 beta 1 integrin on breast carcinoma cells. Clinical & Experimental Metastasis, 13, 223–235.

    Article  CAS  Google Scholar 

  60. Hiraguri, S., Godfrey, T., Nakamura, H., et al. (1998). Mechanisms of inactivation of E-cadherin in breast cancer cell lines. Cancer Research, 58, 1972–1977.

    PubMed  CAS  Google Scholar 

  61. Pishvaian, M. J., Feltes, C. M., Thompson, P., Bussemakers, M. J., Schalken, J. A., & Byers, S. W. (1999). Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Research, 59, 947–952.

    PubMed  CAS  Google Scholar 

  62. Jo, M., Lester, R. D., Montel, V., Eastman, B., Takimoto, S., & Gonias, S. L. (2009). Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. Journal of Biological Chemistry, 284, 22825–22833.

    Article  PubMed  CAS  Google Scholar 

  63. Lester, R. D., Jo, M., Montel, V., Takimoto, S., & Gonias, S. L. (2007). uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. The Journal of Cell Biology, 178, 425–436.

    Article  PubMed  CAS  Google Scholar 

  64. Lo, H. W., Hsu, S. C., Xia, W., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67, 9066–9076.

    Article  PubMed  CAS  Google Scholar 

  65. Bonnomet, A., Syne, L., Brysse, A., et al. (2011). A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene. (In press)

  66. Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. The Journal of Cell Biology, 172, 973–981.

    Article  PubMed  CAS  Google Scholar 

  67. Klymkowsky, M. W., & Savagner, P. (2009). Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. American Journal of Pathology, 174, 1588–1593.

    Article  PubMed  CAS  Google Scholar 

  68. Martinez, V., & Azzopardi, J. G. (1979). Invasive lobular carcinoma of the breast: incidence and variants. Histopathology, 3, 467–488.

    Article  PubMed  CAS  Google Scholar 

  69. DiCostanzo, D., Rosen, P. P., Gareen, I., Franklin, S., & Lesser, M. (1990). Prognosis in infiltrating lobular carcinoma. An analysis of “classical” and variant tumors. The American Journal of Surgical Pathology, 14, 12–23.

    Article  PubMed  CAS  Google Scholar 

  70. Da Silva, L., Parry, S., Reid, L., et al. (2008). Aberrant expression of E-cadherin in lobular carcinomas of the breast. The American Journal of Surgical Pathology, 32, 773–783.

    Article  PubMed  Google Scholar 

  71. Oltean, S., Sorg, B. S., Albrecht, T., et al. (2006). Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 14116–14121.

    Article  PubMed  CAS  Google Scholar 

  72. Oltean, S., Febbo, P. G., & Garcia-Blanco, M. A. (2008). Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo. Clinical & Experimental Metastasis, 25, 611–619.

    Article  CAS  Google Scholar 

  73. Tsuji, T., Ibaragi, S., Shima, K., et al. (2008). Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Research, 68, 10377–10386.

    Article  PubMed  CAS  Google Scholar 

  74. Martorana, A. M., Zheng, G., Crowe, T. C., O’Grady, R. L., & Lyons, J. G. (1998). Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer Research, 58, 4970–4979.

    PubMed  CAS  Google Scholar 

  75. Kleer, C. G., van Golen, K. L., Braun, T., & Merajver, S. D. (2001). Persistent E-cadherin expression in inflammatory breast cancer. Modern Pathology, 14, 458–464.

    Article  PubMed  CAS  Google Scholar 

  76. Lang, S. H., Sharrard, R. M., Stark, M., Villette, J. M., & Maitland, N. J. (2001). Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel cultures. British Journal of Cancer, 85, 590–599.

    Article  PubMed  CAS  Google Scholar 

  77. Kurahara, H., Takao, S., Maemura, K., et al. (2012). Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. Journal of Surgical Oncology, 105, 655–61.

    Article  PubMed  CAS  Google Scholar 

  78. Chao, Y., Wu, Q., Shepard, C., & Wells, A. (2012). Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clinical & Experimental Metastasis, 29, 39–50.

    Article  CAS  Google Scholar 

  79. Yates, C. C., Shepard, C. R., Stolz, D. B., & Wells, A. (2007). Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. British Journal of Cancer, 96, 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  80. Lopes, N., Carvalho, J., Duraes, C., et al. (2012). 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Research, 32, 249–257.

    PubMed  CAS  Google Scholar 

  81. Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28, 15–33.

    Article  PubMed  Google Scholar 

  82. Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, 275–292.

    Article  PubMed  CAS  Google Scholar 

  83. Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14, 818–829.

    Article  PubMed  CAS  Google Scholar 

  84. Jung, A., Schrauder, M., Oswald, U., et al. (2001). The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. American Journal of Pathology, 159, 1613–1617.

    Article  PubMed  CAS  Google Scholar 

  85. Vega, S., Morales, A. V., Ocana, O. H., Valdes, F., Fabregat, I., & Nieto, M. A. (2004). Snail blocks the cell cycle and confers resistance to cell death. Genes & Development, 18, 1131–1143.

    Article  CAS  Google Scholar 

  86. Mejlvang, J., Kriajevska, M., Vandewalle, C., et al. (2007). Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Molecular Biology of the Cell, 18, 4615–4624.

    Article  PubMed  CAS  Google Scholar 

  87. Rubio, C. A. (2006). Cell proliferation at the leading invasive front of colonic carcinomas. Preliminary observations. Anticancer Research, 26, 2275–2278.

    PubMed  CAS  Google Scholar 

  88. Rubio, C. A. (2007). Further studies on the arrest of cell proliferation in tumor cells at the invading front of colonic adenocarcinoma. Journal of Gastroenterology and Hepatology, 22, 1877–1881.

    Article  PubMed  Google Scholar 

  89. Spaderna, S., Schmalhofer, O., Hlubek, F., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830–840.

    Article  PubMed  CAS  Google Scholar 

  90. Gao, D., Joshi, N., Choi, H., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72, 1384–94.

    Article  PubMed  CAS  Google Scholar 

  91. Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890.

    Article  PubMed  CAS  Google Scholar 

  92. Thomson, S., Buck, E., Petti, F., et al. (2005). Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Research, 65, 9455–9462.

    Article  PubMed  CAS  Google Scholar 

  93. Thomson, S., Petti, F., Sujka-Kwok, I., Epstein, D., & Haley, J. D. (2008). Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clinical & Experimental Metastasis, 25, 843–854.

    Article  CAS  Google Scholar 

  94. Yauch, R. L., Januario, T., Eberhard, D. A., et al. (2005). Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clinical Cancer Research, 11, 8686–8698.

    Article  PubMed  CAS  Google Scholar 

  95. Creighton, C. J., Reid, J. G., & Gunaratne, P. H. (2009). Expression profiling of microRNAs by deep sequencing. Briefings in Bioinformatics, 10, 490–497.

    Article  PubMed  CAS  Google Scholar 

  96. Cooke, V. G., LeBleu, V. S., Keskin, D., et al. (2012). Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by MET signaling pathway. Cancer Cell, 21, 66–81.

    Article  PubMed  CAS  Google Scholar 

  97. Valdes, F., Alvarez, A. M., Locascio, A., et al. (2002). The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor beta in fetal rat hepatocytes. Molecular Cancer Research, 1, 68–78.

    PubMed  CAS  Google Scholar 

  98. Ansieau, S., Bastid, J., Doreau, A., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14, 79–89.

    Article  PubMed  CAS  Google Scholar 

  99. Gal, A., Sjoblom, T., Fedorova, L., Imreh, S., Beug, H., & Moustakas, A. (2008). Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene, 27, 1218–1230.

    Article  PubMed  CAS  Google Scholar 

  100. Sayan, A. E., Griffiths, T. R., Pal, R., et al. (2009). SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 106, 14884–14889.

    Article  PubMed  CAS  Google Scholar 

  101. Straub, B. K., Rickelt, S., Zimbelmann, R., et al. (2011). E-N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells. The Journal of Cell Biology, 195, 873–887.

    Article  PubMed  CAS  Google Scholar 

  102. Thiery, J. P. (2002). Epithelial to mesenchymal transitions in tumour progression. Nature Cancer, 2, 442–454.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank members of the Thompson and Wells laboratories for ideas and discussions which shaped the work and conception of this review and gratefully acknowledge the following sources of financial support: the National Breast Cancer Foundation, particularly the National Collaborative Research Program (EMPathy Breast Cancer Network) (Australia), Cancer Council Victoria, The Australian Government's Endeavour Awards Scholarship Program, the Victorian Government's Operational Infrastructure Support Program, the DoD CDMRP on Breast Cancer and the VA Merit Award Program, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik W. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunasinghe, N.P.A.D., Wells, A., Thompson, E.W. et al. Mesenchymal–epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev 31, 469–478 (2012). https://doi.org/10.1007/s10555-012-9377-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9377-5

Keywords

Navigation