Skip to main content

Advertisement

Log in

Epithelial-Mesenchymal Transition (EMT) in Tumor-Initiating Cells and Its Clinical Implications in Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

There is increasing support for the hypothesis that most tumors contain a subpopulation of cells, referred to here as tumor initiating cells (TICs), with the ability to self-renew and to regenerate all the cell types within the tumor. TICs are enriched in breast cancer patients after common treatments, indicating their intrinsic therapeutic resistance. Two independently-derived gene transcription “signatures” of TICs from different studies indicate enrichment of TICs within the recently-identified “claudin-low” intrinsic molecular subtype of breast cancer. These are characterized by high expression of markers associated with epithelial-mesenchymal transition (EMT), suggesting that claudin-low cells may arise from more immature stem or progenitor cells than other breast cancers. EMT is a process by which cells acquire molecular alterations that facilitate dysfunctional cell–cell adhesive interactions and junctions, as well as a more spindle-shaped morphology. These processes may promote cancer cell progression and invasion into the surrounding microenvironment. Induction of EMT in immortalized human mammary epithelial cells results in an increased ability to form mammospheres, and in the expression of stem cell and TIC markers, suggesting that there may be a direct link between the EMT and the gain of TIC properties. Targeting specific molecular pathways—such as Notch, Wnt, and TGFß—associated with development and EMT in the TIC subpopulation, in addition to conventional chemo- and radiation therapies that target the bulk tumor, may ultimately provide a more effective strategy in treating breast cancer. Here, we review recent evidence of the involvement of EMT in breast cancer TICs, focusing on clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EMT:

Epithelial-mesenchymal transition

TIC:

Tumor-initiating cells

References

  1. Vargo-Gogola T, Rosen J. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7:659–72.

    Article  CAS  PubMed  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.

    Article  CAS  PubMed  Google Scholar 

  3. Visvader J, Lindeman G. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.

    Article  CAS  PubMed  Google Scholar 

  4. Al-Hajj M, Wicha M, Benito-Hernandez A, Morrison S, Clarke M. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Lewis M, Huang J, Gutierrez C, Osborne C, Wu M, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9.

    Article  CAS  PubMed  Google Scholar 

  6. Creighton C, Li X, Landis M, Dixon J, Neumeister V, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106(33):13820–5.

    Article  CAS  PubMed  Google Scholar 

  7. Bonnet D, Dick J. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoetic cell. Nat Med. 1997;3:730–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ricci-Vitiani L, Lombardi D, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  CAS  PubMed  Google Scholar 

  9. Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  10. Dontu G, Abdallah W, JM F, Jackson K, Clarke M, Kawamura M, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.

    Article  CAS  PubMed  Google Scholar 

  11. Dontu G, Jackson K, McNicholas E, Kawamura M, Abdallah W, Wicha M. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.

    Article  CAS  PubMed  Google Scholar 

  12. Dontu G, Al-Hajj M, Abdallah W, Clarke M, Wicha M. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36(suppl_1):59–72.

    Article  CAS  PubMed  Google Scholar 

  13. Bao S, Wu Q, McLendon R, Hao Y, Shi Q, Hjelmeland A, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    Article  CAS  PubMed  Google Scholar 

  14. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir I, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.

    Article  PubMed  CAS  Google Scholar 

  15. Jones R, Matsui W, Smith B. Cancer stem cells: are we missing the target? J Natl Cancer Inst. 2004;96(8):583–5.

    Article  PubMed  Google Scholar 

  16. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.

    Article  CAS  PubMed  Google Scholar 

  17. Herschkowitz J, Simin K, Weigman V, Mikaelian I, Usary J, Hu Z, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.16.

    Article  CAS  Google Scholar 

  18. Hennessy B, Gonzalez-Angulo A, Stemke-Hale K, Gilcrease M, Krishnamurthy S, Lee J, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69(10):4116–24.

    Article  CAS  PubMed  Google Scholar 

  19. Liu R, Wang X, Chen G, Dalerba P, Gurney A, Hoey T, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med. 2007;356:217–26.

    Article  CAS  PubMed  Google Scholar 

  20. Shipitsin M, Campbell L, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.

    Article  CAS  PubMed  Google Scholar 

  21. van de Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  22. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.

    Article  CAS  PubMed  Google Scholar 

  23. Lim E, Vaillant F, Wu D, Forrest N, Pal B, Hart A, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15(8):907–13.

    Article  CAS  PubMed  Google Scholar 

  24. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39:305–18.

    Article  CAS  PubMed  Google Scholar 

  25. Damonte P, Gregg J, Borowsky A, Keister B, Cardiff R. EMT tumorigenesis in the mouse mammary gland. Lab Invest. 2007;87:1218–26.

    Article  CAS  PubMed  Google Scholar 

  26. Kokkinos M, Wafai R, Wong M, Newgreen D, Thompson E, Waltham M. Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo. Cells Tissues Organs. 2007;185:191–203.

    Article  CAS  PubMed  Google Scholar 

  27. Lee J, Dedhar S, Kalluri R, Thompson E. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.

    Article  CAS  PubMed  Google Scholar 

  28. Sarrio D, Rodriguez-Pinilla S, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68:989–97.

    Article  CAS  PubMed  Google Scholar 

  29. Trimboli A, Fukino K, de Bruin A, Wei G, Shen L, Tanner S, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68:937–45.

    Article  CAS  PubMed  Google Scholar 

  30. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.

    Article  CAS  PubMed  Google Scholar 

  31. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):989–97.

    Article  CAS  PubMed  Google Scholar 

  32. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68(3):937–45.

    Article  CAS  PubMed  Google Scholar 

  33. Shimono Y, Zabala M, Cho R, Lobo N, Dalerba P, Qian D, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138(3):592–603.

    Article  CAS  PubMed  Google Scholar 

  34. Gregory P, Bracken C, Bert A, Goodall G. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–8.

    CAS  PubMed  Google Scholar 

  35. Wellner U, Schubert J, Burk U, Schmalhofer O, Zhu F, Sonntag A, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487–95.

    Article  CAS  PubMed  Google Scholar 

  36. Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou I, Struhl K, et al. MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal. 2009;2(92):ra62.

    Article  PubMed  Google Scholar 

  37. Mani S, Guo W, Liao M, Eaton E, Ayyanan A, Zhou A, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.

    Article  CAS  PubMed  Google Scholar 

  38. Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci U S A. 2007;104(24):10069–74.

    Article  CAS  PubMed  Google Scholar 

  39. Gupta P, Onder T, Jiang G, Tao K, Kuperwasser C, Weinberg R, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59.

    Article  CAS  PubMed  Google Scholar 

  40. Huber M, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  41. Dontu G, El-Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab. 2004;15(5):193–7.

    Article  CAS  PubMed  Google Scholar 

  42. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.

    Article  CAS  PubMed  Google Scholar 

  43. Dontu G, Liu S, Wicha MS. Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. Stem Cell Rev. 2005;1(3):207–13.

    Article  CAS  PubMed  Google Scholar 

  44. Dontu G, Wicha MS. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia. 2005;10(1):75–86.

    Article  PubMed  Google Scholar 

  45. Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005;7(3):86–95.

    Article  CAS  PubMed  Google Scholar 

  46. Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, et al. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A. 2008;105(5):1680–5.

    Article  CAS  PubMed  Google Scholar 

  47. Korkaya H, Paulson A, Iovino F, Wicha M. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene. 2008;27(47):6120–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grant Support: This study was supported in part by the Breast Cancer Research Foundation (JCC), the Helis Foundation (JCC, JMR), the NCI Breast Cancer SPORE P50 CA50183 (JCC, CJC), 1 R01 CA112305-01 from the National Cancer Institute (JCC), P30 CA125123 from the National Institute of Health (JCC, CJC), grant-in-aid from Glaxo Smith Kline (JCC), and US Army Medical Research and Materiel Command DAMD17-01-0132 and W81XWH-04-1-0468 (JCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad J. Creighton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creighton, C.J., Chang, J.C. & Rosen, J.M. Epithelial-Mesenchymal Transition (EMT) in Tumor-Initiating Cells and Its Clinical Implications in Breast Cancer. J Mammary Gland Biol Neoplasia 15, 253–260 (2010). https://doi.org/10.1007/s10911-010-9173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-010-9173-1

Keywords

Navigation