Skip to main content
Log in

Riboflavin transport and metabolism in humans

  • SSIEM 2015
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Recent studies elucidated how riboflavin transporters and FAD forming enzymes work in humans and create a coordinated flavin network ensuring the maintenance of cellular flavoproteome. Alteration of this network may be causative of severe metabolic disorders such as multiple acyl-CoA dehydrogenase deficiency (MADD) or Brown-Vialetto-van Laere syndrome. A crucial step in the maintenance of FAD homeostasis is riboflavin uptake by plasma and mitochondrial membranes. Therefore, studies on recently identified human plasma membrane riboflavin transporters are presented, together with those in which still unidentified mitochondrial riboflavin transporter(s) have been described. A main goal of future research is to fill the gaps still existing as for some transcriptional, functional and structural details of human FAD synthases (FADS) encoded by FLAD1 gene, a novel “redox sensing” enzyme. In the frame of the hypothesis that FADS, acting as a “FAD chaperone”, could play a crucial role in the biogenesis of mitochondrial flavo-proteome, several basic functional aspects of flavin cofactor delivery to cognate apo-flavoenzyme are also briefly dealt with. The establishment of model organisms performing altered FAD homeostasis will improve the molecular description of human pathologies. The molecular and functional studies of transporters and enzymes herereported, provide guidelines for improving therapies which may have beneficial effects on the altered metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelraheim SR, Spiller DG, McLennan AG (2003) Mammalian NADH diphosphatases of the Nudix family: cloning and characterization of the human peroxisomal NUDT12 protein. Biochem J 374:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin b2 (riboflavin). Annu Rev Nutr 20:153–167

    Article  CAS  PubMed  Google Scholar 

  • Bafunno V, Giancaspero TA, Brizio C et al (2004) Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export. J Biol Chem 279:95–102

    Article  CAS  PubMed  Google Scholar 

  • Barile M, Brizio C, De Virgilio C, Delfine S, Quagliariello E, Passarella S (1997) Flavin adenine dinucleotide and flavin mononucleotide metabolism in rat liver--the occurrence of FAD pyrophosphatase and FMN phosphohydrolase in isolated mitochondria. Europ J Biochem / FEBS 249:777–785

    Article  CAS  Google Scholar 

  • Barile M, Giancaspero TA, Brizio C et al (2013) Biosynthesis of flavin cofactors in man: implications in health and disease. Curr Pharm Des 19:2649–2675

    Article  CAS  PubMed  Google Scholar 

  • Bender T, Lewrenz I, Franken S, Baitzel C, Voos W (2011) Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease. Mol Biol Cell 22:541–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas A, Elmatari D, Rothman J, LaMunyon CW, Said HM (2013) Identification and functional characterization of the Caenorhabditis elegans riboflavin transporters rft-1 and rft-2. PLoS One 8:e58190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonomi F, Iametti S, Morleo A, Ta D, Vickery LE (2008) Studies on the mechanism of catalysis of iron-sulfur cluster transfer from IscU[2Fe2S] by HscA/HscB chaperones. Biochemistry 47:12795–12801

    Article  CAS  PubMed  Google Scholar 

  • Bosch AM, Abeling NG, Ijlst L et al (2011) Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. J Inherit Metab Dis 34:159–164

    Article  CAS  PubMed  Google Scholar 

  • Bragoszewski P, Wasilewski M, Sakowska P et al (2015) Retro-translocation of mitochondrial intermembrane space proteins. Proc Natl Acad Sci U S A 112:7713–7718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brizio C, Otto A, Brandsch R, Passarella S, Barile M (2000) A protein factor of rat liver mitochondrial matrix involved in flavinylation of dimethylglycine dehydrogenase. Europ J Biochem / FEBS 267:4346–4354

    Article  CAS  Google Scholar 

  • Brizio C, Brandsch R, Bufano D, Pochini L, Indiveri C, Barile M (2004) Over-expression in Escherichia coli, functional characterization and refolding of rat dimethylglycine dehydrogenase. Protein Expr Purif 37:434–442

    Article  CAS  PubMed  Google Scholar 

  • Brizio C, Galluccio M, Wait R et al (2006) Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase. Biochem Biophys Res Commun 344:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Brizio C, Brandsch R, Douka M, Wait R, Barile M (2008) The purified recombinant precursor of rat mitochondrial dimethylglycine dehydrogenase binds FAD via an autocatalytic reaction. Int J Biol Macromol 42:455–462

    Article  CAS  PubMed  Google Scholar 

  • Burgess CM, Slotboom DJ, Geertsma ER, Duurkens RH, Poolman B, van Sinderen D (2006) The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J Bacteriol 188:2752–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chastain JL, McCormick DB (1987) Flavin catabolites: identification and quantitation in human urine. Am J Clin Nutr 46:830–834

    CAS  PubMed  Google Scholar 

  • Cialabrini L, Ruggieri S, Kazanov MD et al (2013) Genomics-guided analysis of NAD recycling yields functional elucidation of COG1058 as a new family of pyrophosphatases. PLoS One 8:e65595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelius N, Frerman FE, Corydon TJ et al (2012) Molecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency. Hum Mol Genet 21:3435–3448

    Article  CAS  PubMed  Google Scholar 

  • Decker K, Brandsch R (1997) Determining covalent flavinylation. Methods Enzymol 280:413–423

    Article  CAS  PubMed  Google Scholar 

  • Depeint F, Bruce WR, Shangari N, Mehta R, O'Brien PJ (2006a) Mitochondrial function and toxicity: role of B vitamins on the one-carbon transfer pathways. Chem Biol Interact 163:113–132

    Article  CAS  PubMed  Google Scholar 

  • Depeint F, Bruce WR, Shangari N, Mehta R, O'Brien PJ (2006b) Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact 163:94–112

    Article  CAS  PubMed  Google Scholar 

  • Eli M, Li DS, Zhang WW et al (2012) Decreased blood riboflavin levels are correlated with defective expression of RFT2 gene in gastric cancer. World J Gastroenterol : WJG 18:3112–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foraker AB, Khantwal CM, Swaan PW (2003) Current perspectives on the cellular uptake and trafficking of riboflavin. Adv Drug Deliv Rev 55:1467–1483

    Article  CAS  PubMed  Google Scholar 

  • Frago S, Martinez-Julvez M, Serrano A, Medina M (2008) Structural analysis of FAD synthetase from Corynebacterium ammoniagenes. BMC Microbiol 8:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822:1363–1373

    Article  CAS  PubMed  Google Scholar 

  • Fujimura M, Yamamoto S, Murata T et al (2010) Functional characteristics of the human ortholog of riboflavin transporter 2 and riboflavin-responsive expression of its rat ortholog in the small intestine indicate its involvement in riboflavin absorption. J Nutr 140:1722–1727

    Article  CAS  PubMed  Google Scholar 

  • Galluccio M, Brizio C, Torchetti EM et al (2007) Over-expression in Escherichia coli, purification and characterization of isoform 2 of human FAD synthetase. Protein Expr Purif 52:175–181

    Article  CAS  PubMed  Google Scholar 

  • Gerdes SY, Scholle MD, D'Souza M et al (2002) From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol 184:4555–4572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosal A, Said HM (2012) Mechanism and regulation of vitamin B2 (riboflavin) uptake by mouse and human pancreatic beta-cells/islets: physiological and molecular aspects. Am J Physiol Gastrointest Liver Physiol 303:G1052–G1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianazza E, Vergani L, Wait R et al (2006) Coordinated and reversible reduction of enzymes involved in terminal oxidative metabolism in skeletal muscle mitochondria from a riboflavin-responsive, multiple acyl-CoA dehydrogenase deficiency patient. Electrophoresis 27:1182–1198

    Article  CAS  PubMed  Google Scholar 

  • Giancaspero TA, Wait R, Boles E, Barile M (2008) Succinate dehydrogenase flavoprotein subunit expression in Saccharomyces cerevisiae—involvement of the mitochondrial FAD transporter, Flx1p. FEBS J 275:1103–1117

  • Giancaspero TA, Busco G, Panebianco C et al (2013a) FAD synthesis and degradation in the nucleus create a local flavin cofactor pool. J Biol Chem 288:29069–29080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giancaspero TA, Locato V, Barile M (2013b) A regulatory role of NAD redox status on flavin cofactor homeostasis in S. cerevisiae mitochondria. Oxidative Med Cell Longev 2013:612784

    Article  CAS  Google Scholar 

  • Giancaspero TA, Dipalo E, Miccolis A, Boles E, Caselle M, Barile M (2014) Alteration of ROS homeostasis and decreased lifespan in S. cerevisiae elicited by deletion of the mitochondrial translocator FLX1. BioMed Res Int 2014:101286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giancaspero TA, Colella M, Brizio C et al (2015a) Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis. Front Chem 3:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giancaspero TA, Galluccio M, Miccolis A et al (2015b) Human FAD synthase is a bi-functional enzyme with a FAD hydrolase activity in the molybdopterin binding domain. Biochem Biophys Res Commun 465:443–449

    Article  CAS  PubMed  Google Scholar 

  • Gibson QH, Massey V, Atherton NM (1962) The nature of compounds present in mixtures of oxidized and reduced flavin mononucleotides. Biochem J 85:369–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregersen N (1985) Riboflavin-responsive defects of beta-oxidation. J Inherit Metab Dis 8(Suppl 1):65–69

    Article  CAS  PubMed  Google Scholar 

  • Gregersen N, Andresen BS, Pedersen CB, Olsen RK, Corydon TJ, Bross P (2008) Mitochondrial fatty acid oxidation defects--remaining challenges. J Inherit Metab Dis 31:643–657

    Article  CAS  PubMed  Google Scholar 

  • Haack TB, Makowski C, Yao Y et al (2012) Impaired riboflavin transport due to missense mutations in SLC52A2 causes Brown-Vialetto-Van Laere syndrome. J Inherit Metab Dis 35:943–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao HX, Khalimonchuk O, Schraders M et al (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325:1139–1142

    Article  CAS  PubMed  Google Scholar 

  • Heikal AA (2010) Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med 4:241–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemberger S, Pedrolli DB, Stolz J, Vogl C, Lehmann M, Mack M (2011) RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains. BMC Biotechnol 11:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herguedas B, Martinez-Julvez M, Frago S, Medina M, Hermoso JA (2010) Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes. J Mol Biol 400:218–230

    Article  CAS  PubMed  Google Scholar 

  • Herguedas B, Lans I, Sebastian M, Hermoso JA, Martinez-Julvez M, Medina M (2015) Structural insights into the synthesis of FMN in prokaryotic organisms. Acta Crystallogr Sect D: Biol Crystallogr 71:2526–2542

    Article  CAS  Google Scholar 

  • Hino S, Sakamoto A, Nagaoka K et al (2012) FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 3:758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hudson DA, Gannon SA, Thorpe C (2015) Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic Biol Med 80:171–182

    Article  CAS  PubMed  Google Scholar 

  • Huerta C, Borek D, Machius M, Grishin NV, Zhang H (2009) Structure and mechanism of a eukaryotic FMN adenylyltransferase. J Mol Biol 389:388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hustad S, Ueland PM, Schneede J (1999) Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma by capillary electrophoresis and laser-induced fluorescence detection. Clin Chem 45:862–868

    CAS  PubMed  Google Scholar 

  • Hustad S, McKinley MC, McNulty H et al (2002) Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation. Clin Chem 48:1571–1577

    CAS  PubMed  Google Scholar 

  • Innis WS, McCormick DB, Merrill AH Jr (1985) Variations in riboflavin binding by human plasma: identification of immunoglobulins as the major proteins responsible. Biochem Med 34:151–165

    Article  CAS  PubMed  Google Scholar 

  • Jaeger B, Bosch AM (2016) Clinical presentation and outcome of riboflavin transporter deficiency: mini review after five years of experience. J Inherited Metab Dis

  • Joosten V, van Berkel WJ (2007) Flavoenzymes. Curr Opin Chem Biol 11:195–202

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan S, Zhou Q, Mseeh F, Grishin NV, Osterman AL, Zhang H (2003a) Crystal structure of human riboflavin kinase reveals a beta barrel fold and a novel active site arch. Structure 11:265–273

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan S, Zhou Q, Osterman AL, Zhang H (2003b) Ligand binding-induced conformational changes in riboflavin kinase: structural basis for the ordered mechanism. Biochemistry 42:12532–12538

    Article  CAS  PubMed  Google Scholar 

  • Kasprzak KS, Nakabeppu Y, Kakuma T et al (2001) Intracellular distribution of the antimutagenic enzyme MTH1 in the liver, kidney and testis of F344 rats and its modulation by cadmium. Experiment Toxicol Pathol : Off J Gesellschaft fur Toxikologische Pathol 53:325–335

    Article  CAS  Google Scholar 

  • Kim HJ, Winge DR (2013) Emerging concepts in the flavinylation of succinate dehydrogenase. Biochim Biophys Acta 1827:627–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SS, McCormick DB (1985) Thyroid hormone regulation of flavocoenzyme biosynthesis. Arch Biochem Biophys 237:197–201

    Article  CAS  PubMed  Google Scholar 

  • Leitch JM, Li CX, Baron JA et al (2012) Post-translational modification of Cu/Zn superoxide dismutase under anaerobic conditions. Biochemistry 51:677–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leulliot N, Blondeau K, Keller J, Ulryck N, Quevillon-Cheruel S, van Tilbeurgh H (2010) Crystal structure of yeast FAD synthetase (Fad1) in complex with FAD. J Mol Biol 398:641–646

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Diamanduros A, Chowdhury SA, Scelsa S, Latov N, Sadiq SA (2009) Specific electron transport chain abnormalities in amyotrophic lateral sclerosis. J Neurol 256:774–782

    Article  CAS  PubMed  Google Scholar 

  • Liuzzi VC, Giancaspero TA, Gianazza E, Banfi C, Barile M, De Giorgi C (2012) Silencing of FAD synthase gene in Caenorhabditis elegans upsets protein homeostasis and impacts on complex behavioral patterns. Biochim Biophys Acta 1820:521–531

    Article  CAS  PubMed  Google Scholar 

  • Macheroux P, Kappes B, Ealick SE (2011) Flavogenomics--a genomic and structural view of flavin-dependent proteins. FEBS J 278:2625–2634

    Article  CAS  PubMed  Google Scholar 

  • Maio N, Ghezzi D, Verrigni D, et al (2015) Disease-causing SDHAF1 mutations impair transfer of Fe-S clusters to SDHB. Cell Metab

  • Mashhadi Z, Zhang H, Xu H, White RH (2008) Identification and characterization of an archaeon-specific riboflavin kinase. J Bacteriol 190:2615–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashhadi Z, Xu H, Grochowski LL, White RH (2010) Archaeal RibL: a new FAD synthetase that is air sensitive. Biochemistry 49:8748–8755

    Article  CAS  PubMed  Google Scholar 

  • Massey V (1995) Introduction: flavoprotein structure and mechanism. FASEB J : Off Public Fed Am Soc Experiment Biol 9:473–475

    CAS  Google Scholar 

  • Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296

    Article  CAS  PubMed  Google Scholar 

  • McCormick DB (1989) Two interconnected B vitamins: riboflavin and pyridoxine. Physiol Rev 69:1170–1198

    CAS  PubMed  Google Scholar 

  • McCormick DB (2000) A trail of research on cofactors: an odyssey with friends. J Nutr 130:323S–330S

    CAS  PubMed  Google Scholar 

  • McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mole Life Sci: CMLS 63:123–143

  • McNulty H, Scott JM (2008) Intake and status of folate and related B-vitamins: considerations and challenges in achieving optimal status. British J Nutr 99(Suppl 3):S48–S54

    CAS  Google Scholar 

  • Merrill AH Jr, Lambeth JD, Edmondson DE, McCormick DB (1981) Formation and mode of action of flavoproteins. Annu Rev Nutr 1:281–317

    Article  CAS  PubMed  Google Scholar 

  • Miccolis A, Galluccio M, Giancaspero TA, Indiveri C, Barile M (2012) Bacterial over-expression and purification of the 3′phosphoadenosine 5′phosphosulfate (PAPS) reductase domain of human FAD synthase: functional characterization and homology modeling. Int J Mol Sci 13:16880–16898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miccolis A, Galluccio M, Nitride C et al (2014) Significance of redox-active cysteines in human FAD synthase isoform 2. Biochim Biophys Acta 1844:2086–2095

    Article  CAS  PubMed  Google Scholar 

  • Moat SJ, Ashfield-Watt PA, Powers HJ, Newcombe RG, McDowell IF (2003) Effect of riboflavin status on the homocysteine-lowering effect of folate in relation to the MTHFR (C677T) genotype. Clin Chem 49:295–302

    Article  CAS  PubMed  Google Scholar 

  • Moriyama Y (2011) Riboflavin transporter is finally identified. J Biochem 150:341–343

    Article  CAS  PubMed  Google Scholar 

  • Murataliev MB (1999) Application of electron spin resonance (ESR) for detection and characterization of flavoprotein semiquinones. Methods Mol Biol 131:97–110

    CAS  PubMed  Google Scholar 

  • Mushtaq S, Su H, Hill MH, Powers HJ (2009) Erythrocyte pyridoxamine phosphate oxidase activity: a potential biomarker of riboflavin status? Am J Clin Nutr 90:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Nakano E, Mushtaq S, Heath PR et al (2011) Riboflavin depletion impairs cell proliferation in adult human duodenum: identification of potential effectors. Dig Dis Sci 56:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Olsen RK, Olpin SE, Andresen BS et al (2007) ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain : J Neurol 130:2045–2054

    Article  Google Scholar 

  • Olsen RK, Cornelius N, Gregersen N (2015) Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism. J Inherit Metab Dis 38:703–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen RK, Holzerová E, Giancaspero TA et al (2016) Riboflavin-responsive and non-responsive mutations in the FAD synthase gene cause multiple acyl-CoA dehydrogenase and combined respiratory chain deficiency. Am J Human Genet doi:10.1016/j.ajhg.2016.04.006

  • Padovani D, Banerjee R (2009) A rotary mechanism for coenzyme B(12) synthesis by adenosyltransferase. Biochemistry 48:5350–5357

    Article  CAS  PubMed  Google Scholar 

  • Pedrolli DB, Nakanishi S, Barile M et al (2011) The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase. Biochem Pharmacol 82:1853–1859

    Article  CAS  PubMed  Google Scholar 

  • Perl M, Kearney EB, Singer TP (1976) Transport of riboflavin into yeast cells. J Biol Chem 251:3221–3228

    CAS  PubMed  Google Scholar 

  • Petteys BJ, Frank EL (2011) Rapid determination of vitamin B(2) (riboflavin) in plasma by HPLC. Clin Chim Acta 412:38–43

    Article  CAS  PubMed  Google Scholar 

  • Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77:1352–1360

    CAS  PubMed  Google Scholar 

  • Powers HJ, Hill MH, Mushtaq S, Dainty JR, Majsak-Newman G, Williams EA (2011) Correcting a marginal riboflavin deficiency improves hematologic status in young women in the United Kingdom (RIBOFEM). Am J Clin Nutr 93:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Reihl P, Stolz J (2005) The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae. J Biol Chem 280:39809–39817

    Article  CAS  PubMed  Google Scholar 

  • Reinert KC, Gao W, Chen G, Ebner TJ (2007) Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo. J Neurosci Res 85:3221–3232

    Article  CAS  PubMed  Google Scholar 

  • Rocha H, Ferreira R, Carvalho J et al (2011) Characterization of mitochondrial proteome in a severe case of ETF-QO deficiency. J Proteome 75:221–228

    Article  CAS  Google Scholar 

  • Rouault TA (2015) Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat Rev Mol Cell Biol 16:45–55

    Article  CAS  PubMed  Google Scholar 

  • Safrany ST, Caffrey JJ, Yang X et al (1998) A novel context for the ‘MutT’ module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J 17:6599–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said HM (2011) Intestinal absorption of water-soluble vitamins in health and disease. Biochem J 437:357–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said HM, Ma TY (1994) Mechanism of riboflavine uptake by Caco-2 human intestinal epithelial cells. Am J Physiol 266:G15–G21

    CAS  PubMed  Google Scholar 

  • Said HM, Mohammadkhani R (1993) Folate transport in intestinal brush border membrane: involvement of essential histidine residue(s). Biochem J 290(Pt 1):237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saijo T, Tanaka K (1995) Isoalloxazine ring of FAD is required for the formation of the core in the Hsp60-assisted folding of medium chain acyl-CoA dehydrogenase subunit into the assembly competent conformation in mitochondria. J Biol Chem 270:1899–1907

    Article  CAS  PubMed  Google Scholar 

  • Santos MA, Jimenez A, Revuelta JL (2000) Molecular characterization of FMN1, the structural gene for the monofunctional flavokinase of Saccharomyces cerevisiae. J Biol Chem 275:28618–28624

    Article  CAS  PubMed  Google Scholar 

  • Schiff M, Veauville-Merllie A, Su CH et al (2016) SLC25A32 mutations and riboflavin-responsive exercise intolerance. N Engl J Med 374:795–797

    Article  PubMed  Google Scholar 

  • Serrano A, Ferreira P, Martinez-Julvez M, Medina M (2013) The prokaryotic FAD synthetase family: a potential drug target. Curr Pharm Des 19:2637–2648

    Article  CAS  PubMed  Google Scholar 

  • Sevrioukova IF (2011) Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal 14:2545–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibirnyi AA, Shavlovskii GM, Ksheminskaia GP, Orlovskaia AG (1977) Active transport of riboflavin in the yeast Pichia guilliermondii. detection and some properties of the cryptic riboflavin permease. Biokhimiia 42:1841–1851

    CAS  PubMed  Google Scholar 

  • Spaan AN, Ijlst L, van Roermund CW, Wijburg FA, Wanders RJ, Waterham HR (2005) Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab 86:441–447

    Article  CAS  PubMed  Google Scholar 

  • Subramanian VS, Subramanya SB, Rapp L, Marchant JS, Ma TY, Said HM (2011) Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: a key role for hRFT-2 in intestinal riboflavin uptake. Biochim Biophys Acta 1808:3016–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian VS, Ghosal A, Kapadia R, Nabokina SM, Said HM (2015a) Molecular mechanisms mediating the adaptive regulation of intestinal riboflavin uptake process. PLoS One 10:e0131698

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian VS, Kapadia R, Ghosal A, Said HM (2015b) Identification of residues/sequences in the human riboflavin transporter-2 that is important for function and cell biology. Nutr Metab 12:13

    Article  CAS  Google Scholar 

  • Subramanian VS, Lambrecht NW, Lytle C, Said HM (2015c) Conditional (intestinal-specific) knockout of the riboflavin transporter-3 (RFVT-3) impairs riboflavin absorption. Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00340.2015.

  • Tohmi M, Takahashi K, Kubota Y, Hishida R, Shibuki K (2009) Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity. J Neurochem 109(Suppl 1):3–9

    Article  CAS  PubMed  Google Scholar 

  • Torchetti EM, Brizio C, Colella M et al (2010) Mitochondrial localization of human FAD synthetase isoform 1. Mitochondrion 10:263–273

    Article  CAS  PubMed  Google Scholar 

  • Torchetti EM, Bonomi F, Galluccio M et al (2011) Human FAD synthase (isoform 2): a component of the machinery that delivers FAD to apo-flavoproteins. FEBS J 278:4434–4449

    Article  PubMed  CAS  Google Scholar 

  • Tu BP, Ho-Schleyer SC, Travers KJ, Weissman JS (2000) Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290:1571–1574

    Article  CAS  PubMed  Google Scholar 

  • Tzagoloff A, Jang J, Glerum DM, Wu M (1996) FLX1 codes for a carrier protein involved in maintaining a proper balance of flavin nucleotides in yeast mitochondria. J Biol Chem 271:7392–7397

    Article  CAS  PubMed  Google Scholar 

  • Vergani L, Barile M, Angelini C et al (1999) Riboflavin therapy. Biochemical heterogeneity in two adult lipid storage myopathies. Brain: J Neurol 122(Pt 12):2401–2411

  • Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2002) Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30:3141–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogl C, Grill S, Schilling O, Stulke J, Mack M, Stolz J (2007) Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol 189:7367–7375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Kim R, Yokota H, Kim SH (2005) Crystal structure of flavin binding to FAD synthetase of Thermotoga maritima. Proteins 58:246–248

    Article  CAS  PubMed  Google Scholar 

  • Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15

    Article  CAS  PubMed  Google Scholar 

  • Weber F, Glatzle D, Wiss O (1973) The assessment of riboflavin status. Proc Nutr Soc 32:237–241

    Article  CAS  PubMed  Google Scholar 

  • Wollers S, Layer G, Garcia-Serres R et al (2010) Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor. J Biol Chem 285:23331–23341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Repetto B, Glerum DM, Tzagoloff A (1995) Cloning and characterization of FAD1, the structural gene for flavin adenine dinucleotide synthetase of Saccharomyces cerevisiae. Mol Cell Biol 15:264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu AM, Dedina L, Dalvi P et al (2016) Riboflavin uptake transporter Slc52a2 (RFVT2) is upregulated in the mouse mammary gland during lactation. Am J Physiol Regulat, Integrat Comparat Physiol doi: 10.1152/ajpregu.00507.2015.

  • Yamada Y, Merrill AH Jr, McCormick DB (1990) Probable reaction mechanisms of flavokinase and FAD synthetase from rat liver. Arch Biochem Biophys 278:125–130

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Inoue K, Ohta KY et al (2009) Identification and functional characterization of rat riboflavin transporter 2. J Biochem 145:437–443

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Yonezawa A, Yoshimatsu H, Masuda S, Katsura T, Inui K (2010) Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J Nutr 140:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Yatsyshyn VY, Ishchuk OP, Voronovsky AY, Fedorovych DV, Sibirny AA (2009) Production of flavin mononucleotide by metabolically engineered yeast Candida famata. Metab Eng 11:163–167

    Article  CAS  PubMed  Google Scholar 

  • Yazdanpanah B, Wiegmann K, Tchikov V et al (2009) Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460:1159–1163

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Rouault TA (2010) Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49:4945–4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonezawa A, Inui K (2013) Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol Asp Med 34:693–701

    Article  CAS  Google Scholar 

  • Yonezawa A, Masuda S, Katsura T, Inui K (2008) Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am J Physiol Cell Physiol 295:C632–C641

    Article  CAS  PubMed  Google Scholar 

  • Zempleni J, Galloway JR, McCormick DB (1996) Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am J Clin Nutr 63:54–66

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank: the student M.T. Damiano, (Università degli Studi di Bari “Aldo Moro”) for the aid in figure drawings and Mr V. Giannoccaro (Università degli Studi di Bari “Aldo Moro”) for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Barile.

Ethics declarations

Conflict of interest

None.

Additional information

Communicated by: Manuel Schiff

This work was supported by PON-ricerca e competitività 2007-2013, MIUR (Ministry of Instruction, University and Research - Italy) project 01_00937: “Modelli sperimentali biotecnologici integrati per la produzione ed il monitoraggio di biomolecole di interesse per la salute dell’uomo” to M.B.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Sketch representation of FADS gene exons. Assembly of exons for coding actual (FADS-001 and FADS-002) and predicted protein isoforms is highlithed. Length as coded amino acids for each exon is reported (in brackets). Isoform number and accession numbers are reported on the right (DOCX 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barile, M., Giancaspero, T.A., Leone, P. et al. Riboflavin transport and metabolism in humans. J Inherit Metab Dis 39, 545–557 (2016). https://doi.org/10.1007/s10545-016-9950-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-016-9950-0

Keywords

Navigation