Skip to main content
Log in

Mitochondrial fatty acid oxidation defects—remaining challenges

  • Komrower Lecture
  • Published:
Journal of Inherited Metabolic Disease

Summary

Mitochondrial fatty acid oxidation defects have been recognized since the early 1970s. The discovery rate has been rather constant, with 3–4 ‘new’ disorders identified every decade and with the most recent example, ACAD9 deficiency, reported in 2007. In this presentation we will focus on three of the ‘old’ defects: medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, riboflavin responsive multiple acyl-CoA dehydrogenation (RR-MAD) deficiency, and short-chain acyl-CoA dehydrogenase (SCAD) deficiency. These disorders have been discussed in many publications and at countless conference presentations, and many questions relating to them have been answered. However, continuing clinical and pathophysiological research has raised many further questions, and new ideas and methodologies may be required to answer these. We will discuss these challenges. For MCAD deficiency the key question is why 80% of symptomatic patients are homozygous for the prevalent ACADM gene variation c.985A > G whereas this is found in only ∼50% of newborns with a positive screen. For RR-MAD deficiency, the challenge is to find the connection between variations in the ETFDH gene and the observed deficiency of a number of different mitochondrial dehydrogenases as well as deficiency of FAD and coenzyme Q10. With SCAD deficiency, the challenge is to elucidate whether ACADS gene variations are disease-associated, especially when combined with other genetic/cellular/environmental factors, which may act synergistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amendt BA, Greene C, Sweetman L, et al (1987) Short-chain acyl-coenzyme A dehydrogenase deficiency: clinical and biochemical studies in two patients. J Clin Invest 79: 1303–1309.

    Article  PubMed  CAS  Google Scholar 

  • Andresen BS, Bross P, Udvari S, et al (1997) The molecular basis of medium-chain acyl-CoA degydrogenase (MCAD) deficiency in compound heterozygous patients: is there correlation between genotype and phenotype? Hum Mol Genet 6: 695–707.

    Article  PubMed  CAS  Google Scholar 

  • Andresen BS, Olpin S, Poorthuis BJ, et al (1999) Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet 64: 479–494.

    Article  PubMed  CAS  Google Scholar 

  • Andresen BS, Dobrowolski SF, O’Reilly L, et al (2001) Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Am J Hum Genet 68: 1408–1418.

    Article  PubMed  CAS  Google Scholar 

  • Bennett MJ, Gray RG, Isherwood DM, Murphy N, Pollitt RJ (1985) The diagnosis and biochemical investigation of a patient with a short chain fatty acid oxidation defect. J Inherit Metab Dis 8(Supplement 2): 135–136.

    Article  PubMed  Google Scholar 

  • Bertrand C, Largilliere C, Zabot MT, Mathieu M, Vianey-Saban C (1993) Very long chain acyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid oxidation in fibroblasts. Biochim Biophys Acta 1180: 327–329.

    PubMed  CAS  Google Scholar 

  • Birkebaek NH, Simonsen H, Gregersen N (2002) Hypoglycaemia and elevated urine ethylmalonic acid in a child homozygous for the short-chain acyl-CoA dehydrogenase 625G > A gene variation. Acta Paediatr 91: 480–482.

    Article  PubMed  CAS  Google Scholar 

  • Bougneres PF, Saudubray JM, Marsac C, Bernard O, Odievre M, Girard J (1981) Fasting hypoglycemia resulting from hepatic carnitine palmitoyl transferase deficiency. J Pediatr 98: 742–746.

    PubMed  CAS  Google Scholar 

  • Bross P, Andresen BS, Winter V, et al (1993) Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation. Biochim Biophys Acta 1182: 264–274.

    PubMed  CAS  Google Scholar 

  • Bross P, Jespersen C, Jensen TG, et al (1995) Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme. J Biol Chem 270: 10284–10290.

    Article  PubMed  CAS  Google Scholar 

  • Chang YF, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76: 51–74.

    Article  PubMed  CAS  Google Scholar 

  • Christensen E, Kølvraa S, Gregersen N (1984) Glutaric aciduria type II: evidence for a defect related to the electron transfer flavoprotein or its dehydrogenase. Pediatr Res 18: 663–667.

    Article  PubMed  CAS  Google Scholar 

  • Clayton PT, Eaton S, Aynsley-Green A, et al (2001) Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest 108: 457–465.

    PubMed  CAS  Google Scholar 

  • Coates PM, Hale DE, Finocchiaro G, Tanaka K, Winter SC (1988) Genetic deficiency of short-chain acyl-coenzyme A dehydrogenase in cultured fibroblasts from a patient with muscle carnitine deficiency and severe skeletal muscle weakness. J Clin Invest 81: 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Corydon MJ, Gregersen N, Lehnert W, et al (1996) Ethylmalonic aciduria is associated with an amino acid variant of short-chain acyl-coenzyme A dehydrogenase. Pediatr Res 39: 1059–1966.

    Article  PubMed  CAS  Google Scholar 

  • Corydon TJ, Bross P, Jensen TG, et al (1998) Rapid degradation of short-chain acyl-CoA dehydrogenase (SCAD) variants with temperature-sensitive folding defects occur after import into mitochondria. J Biol Chem 273: 13065–13071.

    Article  PubMed  CAS  Google Scholar 

  • Corydon MJ, Vockley J, Rinaldo P, et al (2001) Role of common gene variations in the molecular pathogenesis of short-chain acyl-CoA dehydrogenase deficiency. Pediatr Res 49: 18–23.

    Article  PubMed  CAS  Google Scholar 

  • Corydon TJ, Hansen J, Bross P, Jensen TG (2005) Down-regulation of Hsp60 expression by RNAi impairs folding of medium-chain acyl-CoA dehydrogenase wild-type and disease-associated proteins. Mol Genet Metab 85: 260–270.

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S, DiMauro PM (1973) Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science 182: 929–931.

    Article  PubMed  CAS  Google Scholar 

  • Frerman FE, Goodman SI (1985) Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts. Proc Natl Acad Sci U S A 82: 4517–4520.

    Article  PubMed  CAS  Google Scholar 

  • Gempel K, Topaloglu H, Talim B, et al (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130: 2037–2044.

    Article  PubMed  Google Scholar 

  • Giak SK, Carpenter K, Hammond J, Christodoulou J, Wilcken B (2002) Quantitative fibroblast acylcarnitine profiles in mitochondrial fatty acid beta-oxidation defects: phenotype/metabolite correlations. Mol Genet Metab 76: 327–334.

    Article  CAS  Google Scholar 

  • Gianazza E, Vergani L, Wait R, et al (2006) Coordinated and reversible reduction of enzymes involved in terminal oxidative metabolism in skeletal muscle mitochondria from a riboflavin-responsive, multiple acyl-CoA dehydrogenase deficiency patient. Electrophoresis 27: 1182–1198.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N (1985) Riboflavin-responsive defects of beta-oxidation. J Inher Metab Dis 8(Supplement 1): 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N (2006) Protein misfolding disorders: pathogenesis and intervention. J Inherit Metab Dis 29: 456–470.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N, Lauritzen R, Rasmussen K (1976) Suberylglycine excretion in the urine from a patient with dicarboxylic aciduria. Clin Chim Acta 70: 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N, Wintzensen H, Christensen SK, Christensen MF, Brandt NJ, Rasmussen K (1982) C6-C10-dicarboxylic aciduria: investigations of a patient with riboflavin responsive multiple acyl-CoA dehydrogenation defects. Pediatr Res 16: 861–868.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N, Winter VS, Corydon MJ, et al (1998) Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511C→T, is present at an unexpectedly high frequency in the general population, as was the case for 625G→A, together conferring susceptibility to ethylmalonic aciduria. Hum Mol Genet 7: 619–627.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N, Bross P, Andresen BS (2004) Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Eur J Biochem 271: 470–482.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N, Bross P, Jørgensen MM (2005) Chapter 13.1: protein folding and misfolding: the role of cellular protein quality control systems in inherited disorders. In: Scriver CR, Beaudet AL, Valle D, Sly WS, Vogelstein B, Childs B, Kinzler KW (eds) MMBID-Online (http://genetics.accessmedicine.com). New York: McGraw-Hill.

    Google Scholar 

  • Gregersen N, Bross P, Vang S, Christensen JH (2006) Protein misfolding and human disease. Annu Rev Genomics Hum Genet 7: 103–124.

    Article  PubMed  CAS  Google Scholar 

  • Gregory J, Lowe S (2000) National Diet and Nutrition Survey of Young People age 4–18 Years. London: The Stationery Office.

    Google Scholar 

  • He M, Rutledge SL, Kelly DR, et al (2007) A new genetic disorder in mitochondrial fatty acid beta-oxidation: ACAD9 deficiency. Am J Hum Genet 81: 87–103.

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23: 115–145.

    Article  PubMed  CAS  Google Scholar 

  • Howat AJ, Bennett MJ, Variend S, Shaw L (1984) Deficiency of medium chain fatty acylcoenzyme A dehydrogenase presenting as the sudden infant death syndrome. Br Med J (Clin Res Ed) 288: 976.

    CAS  Google Scholar 

  • Iafolla AK, Thompson RJ, Roe CR (1994) Medium-chain acyl-coenzyme A dehydrogenase deficiency - Clinical course in 120 affected children. J Pediatr 124: 409–415.

    Article  PubMed  CAS  Google Scholar 

  • Ijlst L, Wanders RJA, Ushikubo S, Kamijo T, Hashimoto T (1994) Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-causing mutation in the alpha-subunit of the mitochondrial trifunctional protein. Bba-Lipid Lipid Metab 1215: 347–350.

    Article  Google Scholar 

  • Jackson S, Kler RS, Bartlett K, et al (1992) Combined enzyme defect of mitochondrial fatty acid oxidation. J Clin Invest 90: 1219–1225.

    Article  PubMed  CAS  Google Scholar 

  • Kamijo T, Indo Y, Souri M, et al (1997) Medium chain 3-ketoacyl-coenzyme A thiolase deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Pediatr Res 42: 569–576.

    Article  PubMed  CAS  Google Scholar 

  • Karpati G, Carpenter S, Engel AG, et al (1975) The syndrome of systemic carnitine deficiency. Clinical, morphologic, biochemical, and pathophysiologic features. Neurology 25: 16–24.

    PubMed  CAS  Google Scholar 

  • Kieweg V, Krautle FG, Nandy A, et al (1997) Biochemical characterization of purified, human recombinant Lys304→Glu medium-chain acyl-CoA dehydrogenase containing the common disease- causing mutation and comparison with the normal enzyme. Eur J Biochem 246: 548–556.

    Article  PubMed  CAS  Google Scholar 

  • Koeberl DD, Young SP, Gregersen N, et al (2003) Rare disorders of metabolism with elevated butyryl- and isobutyryl-carnitine detected by tandem mass spectrometry newborn screening. Pediatr Res 54: 219–223.

    Article  PubMed  CAS  Google Scholar 

  • Kølvraa S, Gregersen N, Christensen E, Hobolth N (1982) In vitro fibroblast studies in a patient with C6-C10-dicarboxylic aciduria: evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta 126: 53–67.

    Article  PubMed  Google Scholar 

  • Kragh PM, Pedersen CB, Schmidt SP, et al (2007) Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice. Mol Genet Metab 91: 128–137.

    Article  PubMed  CAS  Google Scholar 

  • Kurian MA, Hartley L, Zolkipli Z, et al (2004) Short-chain acyl-CoA dehydrogenase deficiency associated with early onset severe axonal neuropathy. Neuropediatrics 35: 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Maier EM, Liebl B, Roschinger W, et al (2005) Population spectrum of ACADM genotypes correlated to biochemical phenotypes in newborn screening for medium-chain acyl-CoA dehydrogenase deficiency. Hum Mutat 25: 443–452.

    Article  PubMed  CAS  Google Scholar 

  • Moat SJ, Ashfield-Watt PA, Powers HJ, Newcombe RG, McDowell IF (2003) Effect of riboflavin status on the homocysteine-lowering effect of folate in relation to the MTHFR (C677T) genotype. Clin Chem 49: 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Nagan N, Kruckeberg KE, Tauscher AL, Snow BK, Rinaldo P, Matern D (2003) The frequency of short-chain acyl-CoA dehydrogenase gene variants in the US population and correlation with the C(4)-acylcarnitine concentration in newborn blood spots. Mol Genet Metab 78: 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Nagao M, Tanaka K (1992) FAD-dependent regulation of transcription, translation, post-translational processing, and post-processing stability of various mitochondrial acyl-CoA dehydrogenases and of electron transfer flavoprotein and the site of holoenzyme formation. J Biol Chem 267: 17925–17932.

    PubMed  CAS  Google Scholar 

  • Naito E, Indo Y, Tanaka K (1990) Identification of two variant short chain acyl-coenzyme A dehydrogenase alleles, each containing a different point mutation in a patient with short chain acyl-coenzyme A dehydrogenase deficiency. J Clin Invest 85: 1575–1582.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KB, Sorensen S, Cartegni L, et al (2007) Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer. Am J Hum Genet 80: 416–432.

    Article  PubMed  CAS  Google Scholar 

  • Odaib AA, Shneider BL, Bennett MJ, et al (1998) A defect in the transport of long-chain fatty acids associated with acute liver failure. N Engl J Med 339: 1752–1757.

    Article  PubMed  CAS  Google Scholar 

  • Okun JG, Kolker S, Schulze A, et al (2002) A method for quantitative acylcarnitine profiling in human skin fibroblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochim Biophys Acta 1584: 91–98.

    PubMed  CAS  Google Scholar 

  • Olsen RK, Andresen BS, Christensen E, Bross P, Skovby F, Gregersen N (2003) Clear relationship between ETF/ETFDH genotype and phenotype in patients with multiple acyl-CoA dehydrogenation deficiency. Hum Mutat 22: 12–23.

    Article  PubMed  CAS  Google Scholar 

  • Olsen RK, Olpin SE, Andresen BS, et al (2007) ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 130: 2045–2054.

    Article  PubMed  Google Scholar 

  • O’Reilly L, Bross P, Corydon TJ, et al (2004) The Y42H mutation in medium-chain acyl-CoA dehydrogenase, which is prevalent in babies identified by MS/MS-based newborn screening, is temperature sensitive. Eur J Biochem 271: 4053–4063.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen CB, Bross P, Winter VS, et al (2003) Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency. J Biol Chem 278: 47449–47458.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen CB, Kolvraa S, Kolvraa A, et al (2008) The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. Hum Genet 124: 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Pettersen JE, Jellum E, Eldjarn L (1972) The occurrence of adipic and suberic acid in urine from ketotic patients. Clin Chim Acta 38: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Przyrembel H, Wendel U, Becker K, et al (1976) Glutaric aciduria type II: report on a previously undescribed metabolic disorder. Clin Chim Acta 66: 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Rhead WJ (2006) Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: a global perspective. J Inherit Metab Dis 29: 370–377.

    Article  PubMed  CAS  Google Scholar 

  • Rhead WJ, Amendt BA, Fritchman KS, Felts SJ (1983) Dicarboxylic aciduria: deficient [1-14C]octanoate oxidation and medium-chain acyl-CoA dehydrogenase in fibroblasts. Science 221: 73–75.

    Article  PubMed  CAS  Google Scholar 

  • Rhead W, Roettger V, Marshall T, Amendt B (1993) Multiple acyl-coenzyme A dehydrogenation disorder responsive to riboflavin: substrate oxidation, flavin metabolism, and flavoenzyme activities in fibroblasts. Pediatr Res 33: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Saijo T, Tanaka K (1995) Isoalloxazine ring of FAD is required for the formation of the core in the Hsp60-assisted folding of medium chain acyl-CoA dehydrogenase subunit into the assembly competent conformation in mitochondria. J Biol Chem 270: 1899–1907.

    Article  PubMed  CAS  Google Scholar 

  • Saijo T, Welch WJ, Tanaka K (1994) Intramitochondrial folding and assembly of medium-chain acyl-CoA dehydrogenase (MCAD)—demonstration of impaired transfer of K304E-variant MCAD from its complex with Hsp60 to the native tetramer. J Biol Chem 269: 4401–4408.

    PubMed  CAS  Google Scholar 

  • Schiff M, Froissart R, Olsen RK, Acquaviva C, Vianey-Saban C (2006) Electron transfer flavoprotein deficiency: functional and molecular aspects. Mol Genet Metab 88: 153–158.

    Article  PubMed  CAS  Google Scholar 

  • Stanley CA, Hale DE, Berry GT, Deleeuw S, Boxer J, Bonnefont JP (1992) Brief report: a deficiency of carnitine-acylcarnitine translocase in the inner mitochondrial membrane. N Engl J Med 327: 19–23.

    PubMed  CAS  Google Scholar 

  • Stanley CA, Hale DE, Coates PM, et al (1983) Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels. Pediatr Res 17: 877–884.

    PubMed  CAS  Google Scholar 

  • Tanaka K, Yokota I, Coates PM, et al (1992) Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene. Hum Mutat 1: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Tein I, Elpeleg O, Ben-Zeev B, et al (2008) Short-chain acyl-CoA dehydrogenase gene mutation (c.319C > T) presents with clinical heterogeneity and is candidate founder mutation in individuals of Ashkenazi Jewish origin. Mol Genet Metab 93: 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Ushikubo S, Aoyama T, Kamijo T, et al (1996) Molecular characterization of mitochondrial trifunctional protein deficiency: formation of the enzyme complex is important for stabilization of both alpha- and beta-subunits. Am J Hum Genet 58: 979–988.

    PubMed  CAS  Google Scholar 

  • van Maldegem BT, Duran M, Wanders RJ, et al (2006) Clinical, biochemical, and genetic heterogeneity in short-chain acyl-coenzyme A dehydrogenase deficiency. JAMA 296: 943–952.

    Article  PubMed  Google Scholar 

  • Vergani L, Barile M, Angelini C, et al (1999) Riboflavin therapy. Biochemical heterogeneity in two adult lipid storage myopathies. Brain 122 (Pt 12): 2401–2411.

    Article  PubMed  Google Scholar 

  • Waddell L, Wiley V, Carpenter K, et al (2006) Medium-chain acyl-CoA dehydrogenase deficiency: genotype–biochemical phenotype correlations. Mol Genet Metab 87: 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Waisbren SE, Levy HL, Noble M, Matern D, Gregersen N, Marsden D (2008) Short-chain acyl-CoA dehydrogenase (SCAD) deficiency: an examination of the medical and neurodevelopmental characteristics of 14 cases identified through newborn screening or clinical symptoms. Mol Genet Metab (in press).

  • Wanders RJ, Duran M, Ijlst L, de Jager JP, van Gennip AH, Jakobs C, Dorland L, van Sprang FJ (1989) Sudden infant death and long-chain 3-hydroxyacyl-CoA dehydrogenase [letter]. Lancet 2: 52–53.

    Article  PubMed  CAS  Google Scholar 

  • Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8: 749–761.

    Article  PubMed  CAS  Google Scholar 

  • Yotsumoto Y, Hasegawa Y, Fukuda S, et al (2008) Clinical and molecular investigations of Japanese cases of glutaric acidemia type 2. Mol Genet Metab 94: 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Frerman FE, Kim JJ (2006) Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc Natl Acad Sci U S A 103: 16212–16217.

    Article  PubMed  CAS  Google Scholar 

  • Ziadeh R, Hoffman EP, Finegold DN, et al (1995) Medium chain Acyl-CoA dehydrogenase deficiency in Pennsylvania: neonatal screening shows high incidence and unexpected mutation frequencies. Pediatr Res 37: 675–678.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Gregersen.

Additional information

Communicating editor: Verena Peters

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregersen, N., Andresen, B.S., Pedersen, C.B. et al. Mitochondrial fatty acid oxidation defects—remaining challenges. J Inherit Metab Dis 31, 643–657 (2008). https://doi.org/10.1007/s10545-008-0990-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-0990-y

Keywords

Navigation