Skip to main content

Advertisement

Log in

Specific electron transport chain abnormalities in amyotrophic lateral sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

In an amyotrophic lateral sclerosis (ALS) patient who also had an IgA gammopathy, autopsy studies identified the IgA in the surviving motor neurons. Further, the IgA bound the surface of isolated bovine motor neurons and inhibited neuronal proliferation in culture. To determine the pathologic basis of this IgA interaction with motor neurons, a neuroblastoma cDNA library was generated and screened with the IgA monoclonal antibody. Reactive clones were identified as flavin adenine dinucleotide (FAD) synthetase. To extend this finding to ALS in general, quantitative RT-PCRs were performed on blood samples from 26 ALS and 30 control blood samples to determine mRNA expression levels of FAD synthetase and other electron transport chain proteins, specifically riboflavin kinase (RFK), cytochrome C1 (CYC1), and succinate dehydrogenase complex subunit B (SDHB). All expression levels were measured against a control enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Expression levels for a non-respiratory chain protein (beta-actin) were also measured. We found that FAD synthetase expression levels were decreased in ALS samples compared to expression levels in controls (P = 0.0151). Expression levels for RFK, CYC1, and SDHB were also significantly decreased in the ALS group (P = 0.0025, P = 0.0002, and P < 0.0001, respectively). As control, expression levels for beta-actin did not show a significant difference between ALS and control groups (P = 0.2118). Our data show that a reduction in electron transport proteins, namely FAD synthetase, RFK, CYC1, and SDHB, is seen in patients with ALS. It is possible that this may have an effect on oxygen-dependent metabolic pathways. Human motor neurons may be particularly susceptible to injury if there is sub-optimal oxidative metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Apostolski S, Thomas FP, Sadiq SA, Suder F, Cadet JL, Latov N, Hays AP, Mena MA, DeYebenes JG (1990) IgA monoclonal antibody in ALS inhibits proliferation of human neuroblastoma cells. In: Neurology, p 184 Abstr

  2. Appel SH, Engelhardt JI, Henkel JS, Siklos L, Beers DR, Yen AA, Simpson EP, Luo Y, Carrum G, Heslop HE, Brenner MK, Popat U (2008) Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology 71:1326–1334

    Article  PubMed  CAS  Google Scholar 

  3. Barile M, Passarella S, Bertoldi A, Quagliariello E (1993) Flavin adenine dinucleotide synthesis in isolated rat liver mitochondria caused by imported flavin mononucleotide. Arch Biochem Biophys 305:442–447

    Article  PubMed  CAS  Google Scholar 

  4. Beghi E, Chio A, Inghilleri M, Mazzini L, Micheli A, Mora G, Poloni M, Riva R, Serlenga L, Testa D, Tonali P (2000) A randomized controlled trial of recombinant interferon beta-1a in ALS. Italian Amyotrophic Lateral Sclerosis Study Group. Neurology 54:469–474

    PubMed  CAS  Google Scholar 

  5. Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM (1999) Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 46:787–790

    Article  PubMed  CAS  Google Scholar 

  6. Brizio C, Galluccio M, Wait R, Torchetti EM, Bafunno V, Accardi R, Gianazza E, Indiveri C, Barile M (2006) Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase. Biochem Biophys Res Commun 344:1008–1016

    Article  PubMed  CAS  Google Scholar 

  7. Comi GP, Bordoni A, Salani S, Franceschina L, Sciacco M, Prelle A, Fortunato F, Zeviani M, Napoli L, Bresolin N, Moggio M, Ausenda CD, Taanman JW, Scarlato G (1998) Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 43:110–116

    Article  PubMed  CAS  Google Scholar 

  8. Cookson MR, Menzies FM, Manning P, Eggett CJ, Figlewicz DA, McNeil CJ, Shaw PJ (2002) Cu/Zn superoxide dismutase (SOD1) mutations associated with familial amyotrophic lateral sclerosis (ALS) affect cellular free radical release in the presence of oxidative stress. Amyotroph Lateral Scler Other Motor Neuron Disord 3:75–85

    Article  PubMed  CAS  Google Scholar 

  9. Deluca C, Kaplan NO (1958) Flavin adenine dinucleotide synthesis in animal tissues. Biochim Biophys Acta 30:6–11

    Article  PubMed  CAS  Google Scholar 

  10. Drachman DB, Chaudhry V, Cornblath D, Kuncl RW, Pestronk A, Clawson L, Mellits ED, Quaskey S, Quinn T, Calkins A et al (1994) Trial of immunosuppression in amyotrophic lateral sclerosis using total lymphoid irradiation. Ann Neurol 35:142–150

    Article  PubMed  CAS  Google Scholar 

  11. Engelhardt JI, Appel SH, Killian JM (1989) Experimental autoimmune motoneuron disease. Ann Neurol 26:368–376

    Article  PubMed  CAS  Google Scholar 

  12. Hamajima S, Ono S, Hirano H, Obara K (1979) Induction of the FAD synthetase system in rat liver by phenobarbital administration. Int J Vitam Nutr Res 49:59–63

    PubMed  CAS  Google Scholar 

  13. Hays AP, Roxas A, Sadiq SA, Vallejos H, D’Agati V, Thomas FP, Torres R, Sherman WH, Bailey-Braxton D, Hays AG et al (1990) A monoclonal IgA in a patient with amyotrophic lateral sclerosis reacts with neurofilaments and surface antigen on neuroblastoma cells. J Neuropathol Exp Neurol 49:383–398

    Article  PubMed  CAS  Google Scholar 

  14. Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 18:3241–3250

    PubMed  CAS  Google Scholar 

  15. Latov N (1990) Neuropathic syndromes associated with monoclonal gammopathies. Res Publ Assoc Res Nerv Ment Dis 68:221–232

    PubMed  CAS  Google Scholar 

  16. Manfredi G, Xu Z (2005) Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 5:77–87

    Article  PubMed  CAS  Google Scholar 

  17. Martin LJ (2006) Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 65:1103–1110

    Article  PubMed  CAS  Google Scholar 

  18. Martin LJ, Liu Z, Chen K, Price AC, Pan Y, Swaby JA, Golden WC (2007) Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol 500:20–46

    Article  PubMed  CAS  Google Scholar 

  19. Morrison BM, Morrison JH (1999) Amyotrophic lateral sclerosis associated with mutations in superoxide dismutase: a putative mechanism of degeneration. Brain Res Brain Res Rev 29:121–135

    Article  PubMed  CAS  Google Scholar 

  20. Rowland LP (1991) Ten central themes in a decade of ALS research. Adv Neurol 56:3–23

    PubMed  CAS  Google Scholar 

  21. Rowland LP (ed), Merritt HH (2005) Merritt’s neurology. Lippincott Williams & Wilkins, Philadelphia

  22. Sadiq SA, Latov N (1991) Monoclonal gammopathy and motor neuron disease. Adv Neurol 56:413–420

    PubMed  CAS  Google Scholar 

  23. Sadiq SA, Thomas FP, Kilidireas K, Protopsaltis S, Hays AP, Lee KW, Romas SN, Kumar N, van den Berg L, Santoro M et al (1990) The spectrum of neurologic disease associated with anti-GM1 antibodies. Neurology 40:1067–1072

    PubMed  CAS  Google Scholar 

  24. Sadiq SA, van den Berg LH, Thomas FP, Kilidireas K, Hays AP, Latov N (1991) Human monoclonal antineurofilament antibody cross-reacts with a neuronal surface protein. J Neurosci Res 29:319–325

    Article  PubMed  CAS  Google Scholar 

  25. Shy ME, Rowland LP, Smith T, Trojaborg W, Latov N, Sherman W, Pesce MA, Lovelace RE, Osserman EF (1986) Motor neuron disease and plasma cell dyscrasia. Neurology 36:1429–1436

    PubMed  CAS  Google Scholar 

  26. Tanridag T, Coskun T, Hurdag C, Arbak S, Aktan S, Yegen B (1999) Motor neuron degeneration due to aluminium deposition in the spinal cord: a light microscopical study. Acta Histochem 101:193–201

    PubMed  CAS  Google Scholar 

  27. Vielhaber S, Kunz D, Winkler K, Wiedemann FR, Kirches E, Feistner H, Heinze HJ, Elger CE, Schubert W, Kunz WS (2000) Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 123(Pt 7):1339–1348

    Article  PubMed  Google Scholar 

  28. Vijayvergiya C, Beal MF, Buck J, Manfredi G (2005) Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J Neurosci 25:2463–2470

    Article  PubMed  CAS  Google Scholar 

  29. Wong NK, Strong MJ (1998) Nitric oxide synthase expression in cervical spinal cord in sporadic amyotrophic lateral sclerosis. Eur J Cell Biol 77:338–343

    PubMed  CAS  Google Scholar 

  30. Younger DS, Rowland LP, Latov N, Sherman W, Pesce M, Lange DJ, Trojaborg W, Miller JR, Lovelace RE, Hays AP et al (1990) Motor neuron disease and amyotrophic lateral sclerosis: relation of high CSF protein content to paraproteinemia and clinical syndromes. Neurology 40:595–599

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saud A. Sadiq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Diamanduros, A., Chowdhury, S.A. et al. Specific electron transport chain abnormalities in amyotrophic lateral sclerosis. J Neurol 256, 774–782 (2009). https://doi.org/10.1007/s00415-009-5015-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-009-5015-8

Keywords

Navigation