Skip to main content
Log in

Molecular mapping of QTLs for wheat flag leaf senescence under water-stress

  • Published:
Biologia Plantarum

Abstract

A segregating population from the cross between drought sensitive (Variant-2) and drought tolerant (Cham-6) genotypes was made to identify molecular markers linked to wheat (Triticum aestivum L.) flag leaf senescence under water-stress. From 38 random amplified polymorphic DNA (RAPD) primers, 25 inter-simple sequence repeat (ISSR) primers and 46 simple sequence repeat (SRR) primers, tested for polymorphism among parental genotypes and F2 population. Quantitative trait locus (QTL) for flag leaf senescence was associated with 1 RAPD marker (Pr9), 4 ISSR markers (Pr8, AD5, AD2 and AD3), and 1 SSR marker (Xgwm382) and explained 44, 50, 35, 31, 22 and 73 % phenotypic variation, respectively. The genetic distance between flag leaf senescence gene and Pr9 was 10.0 cM (LOD score 22.9). The markers Pr8, AD5, AD2 and AD3 had genetic distances of 10.5, 14.6, 15.6 and 18.1 cM, respectively (LOD scores 22.6, 17.8, 17.5 and 14.6). The genetic distance between Xgwm382 was 3.9 cM (LOD score 33.8). Therefore, the RAPD, ISSR and SSR markers linked to the QTL for the drought-induced flag leaf senescence can be further used in breeding for drought tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bulk segregant analysis

FLS:

flag leaf senescence

ISSR:

inter-simple sequence repeat

QTL:

quantitative trait locus

RAPD:

random amplified polymorphic DNA

SSR:

simple sequence repeat

References

  • Altinkut, A., Gozukirmizi, N.: Search for microsatellite markers associated with water-stress tolerance in wheat through bulked segregant analysis. — Mol. Biotechnol. 23: 97–106, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Baenziger, M., Edmeades, G.O., Lafitte, H.R.: Selection for drought tolerance increases maize yields across a range of nitrogen levels. — Crop Sci. 39: 1035–1040, 1999.

    Article  Google Scholar 

  • Barakat, M.N., Al-Doss, A.A., Moustafa, K.A., Ahmed, E.I., Elshafei, A.A.: Morphological and molecular characterization of Saudi wheat genotypes under drought stress. — J. Food Agr. Environ. 8: 220–228, 2010.

    CAS  Google Scholar 

  • Barakat, M.N., Milad, S.I., Imbaby, I.A.: Field evaluation for rust diseases and RAPD analysis for somaclonal variant lines in wheat. — Alexandria J. agr. Res. 50: 11–24, 2005.

    Google Scholar 

  • Beavis, W.D., Smith, O.S., Grant, D., Fincher, R.: Identification of quantitative trait loci using a small sample of top-crossed and F4 progeny from maize. — Crop Sci. 34: 882–896, 1994.

    Article  Google Scholar 

  • Blum, A. (ed.): Plant Breeding for Stress Environments. — CRC Press, Boca Raton 1988.

    Google Scholar 

  • Bradley, S.R., Scott, R.K., Wright, C.E. (ed.): Physiology in the Production and Improvement of Cereals. — Home-Grown Cereals Authority, London 1990.

    Google Scholar 

  • Chandler, J.M.: Current molecular understanding of the genetically programmed process of leaf senescence. — Physiol. Plant. 113: 1–8, 2001.

    Article  Google Scholar 

  • Evans, L.T. (ed.): Crop Evolution, Adaptation, and Yield. — Cambridge University Press, Cambridge 1993.

    Google Scholar 

  • Forster, B.P., Ellis, R.P., Thomas, W.T.: The development and application of molecular markers for abiotic stress tolerance in barley. — J. exp. Bot. 51: 19–27, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Govindaraj, P., Arumugachamy, S., Maheswaran, M.: Bulked segregant analysis to detect main effect QTL associated with grain quality parameters in Basmati 370/ASD16 cross in rice (Oryza sativa L.) using SSR markers. — Euphytica 144: 61–68, 2005.

    Article  CAS  Google Scholar 

  • Hafsi, M., Mechmeche, W., Bouamama, L., Djekoune, A., Zaharieva, M., Monneveux, P.: Flag leaf senescence, as evaluated by numerical image analysis, and its relationship with yield under drought in durum wheat. — J. Agron. Crop Sci. 185: 275–280, 2000.

    Article  Google Scholar 

  • Harris, K., Subudhi, P.K., Borrel, A., Jordan, D., Rosenow, D., Nguyen, H., Klein, P., Klein, R., Mullet, J.: Sorghum staygreen QTL individually reduce post-flowering droughtinduced leaf senescence. — J. exp. Bot. 58: 327–338, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X.J., Zhang, Z.B., Xu, Z.Y., Fu, Z.Y., Hu, S.B., Song, W.Y.: Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. — Biol. Plant. 54: 695–702, 2010.

    Google Scholar 

  • Kebede, H., Subudhi, P.K., Rosenow, D.T., Nguyen, H.T.: Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). — Theor. appl. Genet. 103: 266–276, 2001.

    Article  CAS  Google Scholar 

  • Lawson, W.R., Henry, R.J., Kochman, J.K., Kong, G.A.: Genetic diversity in sunflower (Helianthus annus L.) as revealed by random amplified polymorphic DNA analysis. — Aust. J. agr. Res. 45: 1319–1327, 1994.

    Article  CAS  Google Scholar 

  • Luo, L.J., Zhang, Q.F.: The status and strategy on drought resistance of rice (Oryza sativa L.). — Chinese J. Rice Sci. 15: 209–214, 2001.

    Google Scholar 

  • Mackay, I.J., Caligari, P.D.S.: Efficiencies in F2 and backcross generations for bulked segregant analysis using dominant markers. — Crop Sci. 40: 626–630, 2000.

    Article  Google Scholar 

  • Michelmore, R.W., Paran, I., Kesseli, R.V.: Identification of markers linked to disease-resistance genes by bulked segregant anaylsis: A rapid method to detect markers in specific genomics regions by using segregating populations. — Proc. nat. Acad. Sci. USA 88: 9828–9852, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, J.C.: QGENE: software for marker-based genomic analysis and breeding. — Mol. Breed. 3: 239–245, 1997.

    Article  CAS  Google Scholar 

  • Passioura, J.B.: Environmental biology and crop improvement. — Funct. Plant Biol. 29: 537–546, 2002.

    Article  Google Scholar 

  • Podlich, D.W., Winkler, C.R., Cooper, M.: Mapping as you go: an effective approach for marker-assisted selection of complex traits. — Crop Sci. 44: 1560–1571, 2004.

    Article  Google Scholar 

  • Rajaram, S., Braun, H-J., Van Ginkel, M.: CIMMYT’s approach to breed for drought tolerance. — Euphytica 92: 147–153, 1996.

    Article  Google Scholar 

  • Röeder, M.S., Korzun, V., Gill, B.S., Ganal, M.W.: The physical mapping of microsatellite markers in wheat. — Genome 41: 278–283, 1998.

    Article  Google Scholar 

  • Rosenow, D.T., Clark, L.E.: Drought tolerance in sorghum. — In: Loden, H.D., Wilkinson, D. (ed.): Proceedings of the 36th Annual Corn and Sorghum Industry Research Conference. Pp. 18–31. Chicago 1981.

  • Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W.: Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. — Proc. nat. Acad. Sci. USA 81: 8014–8018, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.: CROPWAT: Manual and Guidelines. — FAO of UN, Rome 1991.

    Google Scholar 

  • Sweeney, P.M., Danneberger, T.K.: Random amplified polymorphic DNA in perennial ryegrass: a comparison of bulk samples vs. individuals. — Hort. Sci. 29: 624–626, 1994.

    CAS  Google Scholar 

  • Tripathy, J.N., Zhang, J., Robin, S., Nguyen, H.T.: QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. — Theor. appl. Genet. 100: 1197–1202, 2000.

    Article  CAS  Google Scholar 

  • Tuberosa, R., Salvi, S.: Genomics-based approaches to improve drought tolerance of crops. — Trends Plant Sci. 11: 405–412, 2007.

    Article  Google Scholar 

  • Verma, V., Foulkes, M.J., Caligari, P., Bradley, S.R., Snape, J.: Mapping QTLs for flag leaf senescence as a yield determinant in winter wheat under optimal and droughted environments. — Euphytica 135: 255–263, 2004.

    Article  CAS  Google Scholar 

  • Visser, B.: Technical aspects of drought tolerance. — Biotechnol. Dev. Monitor. 18: 5, 1994.

    Google Scholar 

  • Xu, B.Y., Shen, Z. T., Chen, Y.: Molecular mapping for quantitative trait loci controlling rice yield. — Acta genet. sin. 22: 46–52, 1995.

    CAS  Google Scholar 

  • Zheng, X.Y., Wang, Y.J., Song, S.H., Li, L., Yu, S.C.: [Identification of heat tolerance linked molecular markers of Chinese cabbage Brassica campestris ssp. pekinensis.] — Agr. Sci. China 1: 309–313, 2002. [In Chinese]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Barakat.

Additional information

Acknowledgements: The study was supported by the Research Enhancement Program (ALEX REP). The program is administrated by Alexandria University (project Biot-6), Alexandria, Egypt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barakat, M.N., Wahba, L.E. & Milad, S.I. Molecular mapping of QTLs for wheat flag leaf senescence under water-stress. Biol Plant 57, 79–84 (2013). https://doi.org/10.1007/s10535-012-0138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0138-7

Additional key words

Navigation