Skip to main content
Log in

Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Mature seed-derived embryogenic calli of indica rice (Oryza sativa L. cv. PAU201) were induced on semisolid Murashige and Skoog medium supplemented with 2.5 mg dm−3 2,4-dichlorophenoxyacetic acid + 0.5 mg dm−3 kinetin + 560 mg dm−3 proline + 30 g dm−3 sucrose + 8 g dm−3 agar. Using OsglyII gene, out of 3180 calli bombarded, 32 plants were regenerated on medium containing hygromycin (30 mg dm−3). Histochemical GUS assay of the hygromycin selected calli revealed GUS expression in 50 % calli. Among the regenerants, 46.87 % were GUS positive. PCR analysis confirmed the presence of the transgene of 1 kb in 60 % of independent plants. Further, these plants have been grown to maturity in glasshouse. In vitro screening for salt tolerance showed increase in fresh mass of OsglyII putative transgenic calli (185.4 mg) as compared to control calli (84.2 mg) on 90 mM NaCl after 15 d. When exposed to 150 mM NaCl, OsglyII putative transgenic plantlets showed normal growth while the non-transgenic control plantlets turned yellow and finally did not survive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

BAP:

benzylaminopurine

2,4-D:

2,4-dichlorophenoxyacetic acid

GUS:

β-glucoronidase

Kin:

kinetin

NAA:

napthaleneacetic acid

Osgly II :

Oryza sativa glyoxalase II

PDS:

particle delivery system

SLG:

SD-lactoylglutathione

x-gluc:

5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid cyclohexylammonium salt

References

  • Aghaleh, M., Niknam, V., Ebrahimzadeh, H., Razavi, K.: Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. — Biol. Plant. 53: 243–248, 2009.

    Article  CAS  Google Scholar 

  • Akita, S., Cabuslay, G.S.: Physiological basis of differential response to salinity in rice lands. — In: Proc. 3rd Int. Symp. Genet. Aspects Plant Mineral Nutr. Pp. 37. Braunschweig 1988.

  • Benderradji, L., Bouzerzou, H., Djekoun, A., Yekhlef, N., Benmahammed, A.: Effects of NaCl stress on callus proliferation and plant regeneration from mature embryos of bread wheat (Triticum aestivum L.) cultivars Mahon demias and Hidhab. — Plant Tissue Cult. Biotechnol. 17: 19–27, 2007.

    Google Scholar 

  • Christou, P., Ford, T.L., Kofron, M.: Production of transgenic rice (Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. — Bio/Technology 9: 957–962, 1991.

    Article  Google Scholar 

  • Deswal, R., Sopory, S.K.: Purification and partial characterrization of glyoxalase I from a higher plant B. juncea. — FEBS Lett. 282: 277–280, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Deswal, R., Chakravarty, T.N., Sopory, S.K.: The glyoxalase system in higher plants: regulation in growth and differentiation. — Biochem. Soc. Trans. 21: 527–530, 1993.

    PubMed  CAS  Google Scholar 

  • Espartero, J., Sanchez-Aguayo, I., Pardo, J.M.: Molecular characterization of glyoxalase I from a higher plant: upregulation by stress. — Plant mol. Biol. 29, 1223-1233, 1995.

    Google Scholar 

  • Gosal, S.S., Wani, S.H., Kang, M.S.: Biotechnology and drought tolerance. — J. Crop Improv. 23: 19–54, 2009.

    Article  CAS  Google Scholar 

  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity. — Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463–499, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hoque, E.H., Mansfield, J.W.: Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of Indica rice genotypes. — Plant Cell Tissue Organ Cult. 78: 217–223, 2004.

    Article  CAS  Google Scholar 

  • Jain, M., Choudhary, D., Kale, R.K., Bhalla-Sarin, N.: Salt- and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). — Physiol. Plant. 114: 499–505, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Johansen, K.S., Svendsen, II., Rasmussen, S.K.: Purification and cloning of the two domain glyoxalase I from wheat bran. — Plant Sci. 155: 11–20, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lafitte, H., Bennet, J.: Requirement for aerobic rice. Physiological and Molecular Considerations. — In: Bouman, B.A.M., Hengsdijk, H., Hardy, B. (ed.): Water-Wise Rice Production. Pp. 253. International Rice Research Institute, Los Baños 2003.

    Google Scholar 

  • Maqbool, S.B., Husnain, T., Riazuddin, S., Masson, L., Christou, P.: Effective control of yellow stem borer and rice leaf folder in transgenic rice Indica varieties Basmati 370 and M7 using the novel delta-endotoxin cry2A Bacillus thuringiensis gene. — Mol. Breed. 4: 501–507, 1998.

    Article  CAS  Google Scholar 

  • Mitsuoka, K., Honda, H., Xing, X.H., Unno, H.: Effect of intracellular 2,4-D concentration on plantlet regeneration of rice (Oryza sativa L.) callus. — Appl. Microbiol. Biotechnol. 42: 364–366, 1994.

    CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised method for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–479, 1962.

    Article  CAS  Google Scholar 

  • Mutlu, S., Atici, O., Nalbantoglu, B.: Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. — Biol. Plant. 53: 334–338, 2009.

    Article  CAS  Google Scholar 

  • Oszvald, M., Kang, T.J., Tomoskozi, S., Jenes, B., Kim, T.G., Cha, Y.S., Tamas, L., Yang, M.S.: Expression of cholera toxin B subunit in transgenic rice endosperm. — Mol. Biotechnol. 40: 261–268, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Paulus, C., Knollner, B., Jacobson, H.: Physiological and biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. — Planta 189: 561–566, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Singh, A.K., Ansari, M.W., Pareek, A., Singla-Pareek, S.L.: Raising salinity tolerant rice: recent progress and future perspectives. — Physiol. mol. Biol. Plants 14: 137–154, 2008.

    Article  CAS  Google Scholar 

  • Singla-Pareek, S.L., Reddy, M.K., Sopory, S.K.: Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. — Proc. nat. Acad. Sci. USA 93: 13404–13409, 2003.

    Google Scholar 

  • Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K.: Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. — Transgenic Res. 17: 171–180, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Skipsey, M., Andrews, C.J., Townson, J.K., Jepson, I., Edwards, R.: Cloning and characterization of glyoxalase I from soybean. — Arch. Biochem. Biophys. 374: 261–268, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Su, J., Hirji, R., Zhang, L., He, C., Selvaraj, G., Wu, R.: Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. — J. exp. Bot. 57: 1129–1135, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski, M.C., Jensen, R.G., Bohnert H.J.: Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. — Proc. nat. Acad. Sci. USA 89: 2600–2604, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Thach, T.N., Pant, R.C.: In vitro study on salt tolerance in rice. — Omonrice 7: 80–88, 1999.

    Google Scholar 

  • Veena Reddy, V.S., Sopory, S.K.: Glyoxalase I from Brassica juncea: molecular cloning, regulation and its overexpression confer tolerance in transgenic tobacco under stress. — Plant J. 17: 385–395, 1999.

    Article  Google Scholar 

  • Yeo, A.R., Yeo, M.E., Flowers, S.A., and Flowers, T.J.: Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. — Theor. appl. Genet. 79: 377–384, 1990.

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to Prof. Sudhir Kumar Sopory, Group Leader, Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg110 067, New Delhi, India, for kindly providing the Osgly II gene construct and Department of Biotechnology, Govt.of India, New Delhi for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Wani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wani, S.H., Gosal, S.S. Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biol Plant 55, 536–540 (2011). https://doi.org/10.1007/s10535-011-0120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0120-9

Additional key words

Navigation