Skip to main content
Log in

Raising salinity tolerant rice: recent progress and future perspectives

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

With the rapid growth in population consuming rice as staple food and the deteriorating soil and water quality around the globe, there is an urgent need to understand the response of this important crop towards these environmental abuses. With the ultimate goal to raise rice plant with better suitability towards rapidly changing environmental inputs, intensive efforts are on worldwide employing physiological, biochemical and molecular tools to perform this task. In this regard, efforts of plant breeders need to be duly acknowledged as several salinity tolerant varieties have reached the farmers field. Parallel efforts from molecular biologists have yielded relevant knowledge related to perturbations in gene expression and proteins during stress. Employing transgenic technology, functional validation of various target genes involved in diverse processes such as signaling, transcription, ion homeostasis, antioxidant defense etc for enhanced salinity stress tolerance has been attempted in various model systems and some of them have been extended to crop plant rice too. However, the fact remains that these transgenic plants showing improved performance towards salinity stress are yet to move from ‘lab to the land’. Pondering this, we propose that future efforts should be channelized more towards multigene engineering that may enable the taming of this multigene controlled trait. Recent technological achievements such as the whole genome sequencing of rice is leading to a shift from single gene based studies to genome wide analysis that may prove to be a boon in re-defining salt stress responsive targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, G.K., Iwahashi, H. and Rakwal, R. (2003). Rice MAPKs. Biochem. Biophys. Res. Commun. 302: 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Alia, Hayashi, H., Chen T.H.H. and Murata, N. (1998). Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ., 21: 232–239.

    Article  CAS  Google Scholar 

  • Apse, M.P. and Blumwald, E. (2002). Engineering salt tolerance in plants. Curr. Opin. Biotechnol., 13: 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Apse, M.P., Aharon, G.S., Snedden, W.A. and Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285: 1256–1258.

    Article  PubMed  CAS  Google Scholar 

  • Asano, T., Tanaka, N., Yang, G., Hayashi, N. and Kamatsu, S. (2005). Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol., 46: 356–366.

    Article  PubMed  CAS  Google Scholar 

  • Asch, F., Dingkuhn, M., Dörffling K. and Miezan, K. (2000). Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica, 113: 109–118.

    Article  Google Scholar 

  • Babu, R., Zhang, J., Blum, A., Ho, D., Wu, R. and Nguyen, H.T. (2004). HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci., 166: 855–862.

    Article  CAS  Google Scholar 

  • Badawi, G.H., Yamauchi, Y., Shimada, E., Sasaki, R., Kawano, N., Tanaka, K. and Tanaka, K. (2004). Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci., 166: 919–928.

    Article  CAS  Google Scholar 

  • Bajaj, S. and Mohanty, A. (2005). Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotech. J., 3: 275–307.

    Article  CAS  Google Scholar 

  • Blokhina, O., Virolainen, E. and Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 91: 179–194.

    Article  PubMed  CAS  Google Scholar 

  • Bohra, J.S. and Dörffling, K. (1993). Potassium nutrition of rice (Oryza sativa L.) varieties under NaCl salinity. Plant Soil, 152: 299–303.

    Article  Google Scholar 

  • Boonburapong, B. and Buaboocha, T. (2007). Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol., 7: 4.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, J.S. (1982). Plant productivity and environment. Science, 218: 443–448.

    Article  PubMed  Google Scholar 

  • Breusegem, F.V., Vranova, E., Dat, J.F. and Inze, D. (2001). The role of active oxygen species in plant signal transduction. Plant Sci., 161: 405–414.

    Article  Google Scholar 

  • Brouquisse, R. Weigel, P., Rhodes, D., Yocum, C.F. and Hanson, A.D. (1989). Evidence for a ferredoxin-dependent choline mono-oxygenase from spinach chloroplasts stroma. Plant Physiol., 90: 322–329.

    PubMed  CAS  Google Scholar 

  • Cheng, Z., Jayprakash, T., Huang, X. and Wu, R. (2002). Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol. Breed., 16: 71–82.

    Article  Google Scholar 

  • Counce, P.A. and Wells, B.R. (1990). Rice plant population density effect on early-season nitrogen requirement. J. Prod. Agric., 3: 390–393.

    Google Scholar 

  • Cushman, J.C. and Bohnert, H.J. (2000). Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol., 3: 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Das, A., Gosal, S.S., Sidhu, J.S. and Dhaliwal, H.S. (2000). Induction of mutations for heat tolerance in potato by using in vitro culture and radiation. Euphytica, 120: 205–209.

    Article  Google Scholar 

  • De Ronde, J.A., Cress, W.A., Kruger, G.H.J., Strasser, R.J. and van Staden, J. (2004). Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CS gene, during heat and drought stress. J. Plant Physiol., 161: 1211–1224.

    Article  PubMed  CAS  Google Scholar 

  • De Ronde, J.A., Strasser, R.J. and van Staden, J. (2001). Interaction of osmotic and temperature stress on transgenic soybean. Afr. J. Bot., 67: 655–660.

    Google Scholar 

  • Delauney, A.J. and Verma, D.P.S. (1993). Proline biosynthesis and osmoregulation in plants. Plant J., 4: 215–223.

    Article  CAS  Google Scholar 

  • Droillard, M.J., Thibivilliers, S., Cazale, A.C., Barbier-Brygoo, H. and Lauriere, C. (2000). Protein kinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions: Two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett., 474: 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J., 33: 751–763.

    Article  PubMed  CAS  Google Scholar 

  • Fasano, J., Massa, G. and Gilroy, S. (2002). Ionic signaling in plant responses to gravity and touch. J. Plant Growth Reg., 21: 71–88.

    Article  CAS  Google Scholar 

  • Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L.S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J., 39: 863–876.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H. and Tanaka, Y. (2004). Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol., 45: 146–159.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, A., Yazaki, Y., Ishikawa, T., Koike, S. and Tanaka, Y. (1998). Na+/H+ antiporter in tonoplast vesicles from rice roots. Plant Cell Physiol., 39: 196–201.

    CAS  Google Scholar 

  • Gao, J.P., Chao, D.Y. and Lin, H.X. (2007). Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J. Integr. Plant Biol., 49: 742–750.

    Article  CAS  Google Scholar 

  • Garg, A.K., Kim, J.K., Owens, T.G, Ranwala, A.P., Choi, Y.D., Kochian, L.V. and Wu, R. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA, 99: 15898–15903.

    Article  PubMed  CAS  Google Scholar 

  • Glenn, E.P., Brown, J.J. and Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci., 18: 227–256.

    Article  Google Scholar 

  • Goddijn, O.J.M. and van Dun, K. (1999). Trehalose metabolism in plants. Trends Plant Sci., 4: 315–319.

    Article  PubMed  Google Scholar 

  • Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B. M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W. L., Chen, L., Cooper, B., Park, S., Wood, T. C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R. M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A., and Briggs, S. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296: 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Gravois, K.A. and McNew, R.W. (1993). Genetic relationships and selection for rice yield and yield components. Crop Sci., 33: 249–252.

    Google Scholar 

  • Gupta, A.S., Heinen, J.I., Holaday, S., Burket, J.J. and Allen, R.D. (1993a). Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA, 90: 1629–1633.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A.S., Robert, P., Webb, A., Holaday, S. and Allen, R.D. (1993b). Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol., 103: 1067–1073.

    PubMed  Google Scholar 

  • Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol., 130: 639–648.

    Article  PubMed  CAS  Google Scholar 

  • Hamida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savoure, A. and Jaoua, S. (2005). Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci., 169: 746–752.

    Article  CAS  Google Scholar 

  • Hasegawa, P.M., Bressan, R.A. and Pardo, J.M. (2000). The dawn of plant salt tolerance genetics. Trends Plant Sci., 5: 317–319.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Alia, M.L., Deshnium, P., Ida, M. and Murata, N. (1997). Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J., 12: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Heenan, D.P., Lewin, L.G. and McCaffery, D.W. (1988). Salinity tolerance in rice varieties at different growth stages. Aust. J. Exp. Agric., 28: 343–349.

    Article  Google Scholar 

  • Hirt, H. (1997). Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci., 2: 11–15.

    Article  Google Scholar 

  • Hoshida, H., Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., Takabe, T. and Takabe, T. (2000). Enhanced tolerance to salt stress in transgenic rice that overexpress chloroplast glutamine synthetase. Plant Mol. Biol., 43: 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q. and Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA, 103: 12987–12992.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A. and Selvaraj, G. (2000). Genetic engineering of glycine betaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol., 122: 747–756.

    Article  PubMed  CAS  Google Scholar 

  • Ikuta, S., Mamura, S., Misaki, H. and Horiuti, Y. (1977). Purification and characterization of choline oxidase from Arthrobacter globiformis. J. Biochem., 82: 1741–1749.

    PubMed  CAS  Google Scholar 

  • Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol., 47: 141–153.

    Article  PubMed  CAS  Google Scholar 

  • Jang, I.C., Oh, S.J., Seo, J.S., Choi, W.B., Song, S.I., Kim, C.H., Kim, Y.S., Seo, H.S., Choi, Y.D., Nahm, N.M. and Kim, J.K. (2003). Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol., 131: 516–524.

    Article  PubMed  CAS  Google Scholar 

  • Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S. and Hirt, H. (1996). Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Nat. Acad. Sci. USA, 93: 11274–11279.

    Article  PubMed  CAS  Google Scholar 

  • Kathuria, H., Giri, J., Tyagi, H. and Tyagi, A.K. (2007). Advances in transgenic rice biotechnology. Crit. Rev. Plant Sci., 26: 65–103.

    Article  CAS  Google Scholar 

  • Katsuhara, M., Otsuka, T. and Ezaki, B. (2005). Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci., 169: 369–373.

    Article  CAS  Google Scholar 

  • Kavi Kishor, P.B., Hong, Z., Miao, G.H., Hu, C.A.A. and Verma, D.P.S. (1995). Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol., 108: 1387–1394.

    Google Scholar 

  • Khatun, S., Rizzo, C.A. and Flowers, T.J. (1995). Genotypic variation in the effect of salinity on fertility in rice. Plant Soil, 173: 239–250.

    Article  CAS  Google Scholar 

  • Kiegerl, S., Cardinale, F., Siligan, C., Gross, A., Baudouin, E., Liwosz, A., Eklof, S., Till, S., Bögre, L., Hirt, H. and Meskiene, I. (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 12: 2247–2258.

    Article  PubMed  CAS  Google Scholar 

  • Kornyeyev, D., Logan, B.A. Allen, R.A. and Holaday, A.S. (2003). Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Plant Sci., 165: 1033–1041.

    Article  CAS  Google Scholar 

  • Kultz, D. (1998). Phylogenetic and functional classification of mitogen-and stress-activated protein kinases. J. Mol. Evol., 46: 571–588.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Dhingra, A., Daniell, H. (2004). Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol., 136: 2843–2854.

    Article  PubMed  CAS  Google Scholar 

  • Landfald, B. and Strom, A.R. (1986). Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bact., 165: 849–855.

    PubMed  CAS  Google Scholar 

  • Lee, I.S., Kim, D.S., Lee, S.J., Song, H.S., Lim, Y.P. and Lee, Y.I. (2003). Selection and characterizations of radiation-induced salinity-tolerant lines in rice. Breed. Sci. 53: 313–318.

    Article  CAS  Google Scholar 

  • Lee, S.C., Huh, K.W., An, K., An, G., Kim, S.R. (2004). Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol Cells, 18: 107–114.

    PubMed  CAS  Google Scholar 

  • Lee, Y.P., Kim, S.H., Bang, J.W., Lee, H.S., Kwak, S.S. and Kwon, S.Y. (2007). Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep., 26: 591–598.

    Article  PubMed  CAS  Google Scholar 

  • Ligterink, W., Kroj, T., Nieden, U.Z., Hirt, H. and Scheel, D. (1997). Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science, 276: 2054–2057.

    Article  PubMed  CAS  Google Scholar 

  • Lilius, G., Holmberg, N. and Bulow, L. (1996). Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. BioTech., 14: 177–180.

    Article  CAS  Google Scholar 

  • Liu, Q. and Xue, Q. (2007). Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa. Plant Physiol. Biochem., 45: 6–14.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10: 1391–1406.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z., Liu, D. and Liu, S. (2007). Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep., (In press).

  • Ma, X., Qian, Q. and Zhu, D. (2005). Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Plant Mol. Biol., 58: 483–495.

    Article  PubMed  CAS  Google Scholar 

  • Malik, V. and Wu, R. (2005). Transcription factor AtMyb2 increased salt-stress tolerance in rice, (Oryza sativa L.). Rice Genet. Newslett., 22: 63.

    Google Scholar 

  • Malmberg, R.L. and McIndoo, J. (1984). Ultraviolet mutagenesis and genetic analysis of resistance to methylglyoxal-bis (guanylhydrazone) in tobacco. Mol. Gen. Genet., 196: 28–34.

    Article  CAS  Google Scholar 

  • Martinez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I. Zhu, J.K., Pardo, J.M. and Quintero, F.J. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiol., 143: 1001–1012.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, T., Tabayashi, N., Kamagata, Y., Souma, C. and Saruyama, H. (2002). Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol. Plant., 116: 317–327.

    Article  CAS  Google Scholar 

  • McKersie, B.D., Bowley, S.R., Harjanto, E. and Leprince, O. (1996). Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol., 111: 1177–1181.

    PubMed  CAS  Google Scholar 

  • McKersie, B.D., Bowley, S.R. and Jones, K.S. (1999). Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol., 119: 839–848.

    Article  PubMed  CAS  Google Scholar 

  • McKersie, B.D., Chen, Y., deBeus, M., Bowley, S.R., Bowler, C., Inzé, D., D’Halluin, K., Botterman, J. (1993). Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol., 103: 1155–1163.

    Article  PubMed  CAS  Google Scholar 

  • McKersie, B.D., Murnaghan, J., Jones, K.S. and Bowley, S.R. (2000). Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol., 122: 1427–1437.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza, I., Quintero, F.J., Bressan, R.A., Hasegawa, P.M. and Pardo, J.M. (1996). Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J. Biol. Chem., 271: 23061–23067.

    Article  PubMed  CAS  Google Scholar 

  • Mengiste, T., Chen, X., Salmeron, J. and Dietrich, R. (2003). The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell, 15: 2551–2565.

    Article  PubMed  CAS  Google Scholar 

  • Miah, M.A.A., Pathan, M.S. and Quayum, H.A. (1996). Production of salt tolerant rice breeding line via doubled haploid. Euphytica, 91: 285–288.

    Article  Google Scholar 

  • Moghaieb, R.E.A., Tanaka, N., Saneoka, H., Hussein, H.A., Yousef, S.S., Ewada, M.A., Aly, M.A.M. and Fujita, K. (2000). Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of osmotic potential under salt stress. Soil Sci. Plant Nutr., 46: 873–883.

    CAS  Google Scholar 

  • Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N. and Tyagi, A.K. (2002). Transgenics of an elite indica rice variety Pusa Basmati-1 harbouring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet., 106: 51–57.

    PubMed  CAS  Google Scholar 

  • Molinari, H.B.C., Marur, C.J., Daros, E., de Campos, M.K.F., de Carvalho, J.F.R.P., Filho, J.C.B., Pereira, L.F.P. and Vieira, L.G.E. (2007). Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress Physiol. Plant., 130: 218–229.

    Article  CAS  Google Scholar 

  • Molinari, H.B.C., Marura, C.J., Filhoa, J.C.B., Kobayashib, A.K., Pileggic, M., Júniora, R.P.L., Pereirad, L.F.P. and Vieiraa, L.G.E. (2004). Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci., 167: 1375–1381.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, A., Vij, S. and Tyagi, A.K. (2004). Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA, 101: 6309–6314.

    Article  PubMed  CAS  Google Scholar 

  • Munnik, T., Ligterink, W., Meskiene, I., Calderini, O., Beyerly, J., Musgrave, A. and Hirt, H. (1999). Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant J., 20: 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol., 167: 645–663.

    Article  PubMed  CAS  Google Scholar 

  • Nagamiya, K., Motohashi, T., Nakao, K., Prodhan, S.H., Hattori, E., Hirose, S., Ozawa, K., Ohkawa, Y., Takabe, T., Takabe, T. and Komamine, A. (2007). Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE Plant Biotech. Rep., 1: 49–55.

    Article  Google Scholar 

  • Natarajan, S.K., Ganapathy, M., Krishnakumar, S., Dhanalakshmi, R. and Saliha, B.B. (2005). Grouping of rice genotypes for salinity tolerance based upon grain yield and Na: K ratio under coastal environment. Res. J Agric. Biol. Sci. 1: 162–165.

    Google Scholar 

  • Obata, T., Kitamoto, H.K., Nakamura, A., Fukuda, A. and Tanaka, Y. (2007). Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol., 144: 1978–1985.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S.J., Kwon, C.W., Choi, D.W., Song, S.I. and Kim, J.K. (2007). Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotech. J., 5: 646–656.

    Article  CAS  Google Scholar 

  • Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M., Kim, Y.K., Nahm, B.H. and Kim, J.K. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol., 183: 341–351.

    Article  CAS  Google Scholar 

  • Ohta, M., Hayashia, Y., Nakashimaa, A., Hamada, A., Tanaka, A., Nakamurab, T., Hayakawa, T. (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett., 532: 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K. and Kikuchi, S. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res., 10: 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, U.K. and Srivastava, R.D.L. (1991). Leaf potassium as an index of salt tolerance in paddy. Nat. Acad. Sci. Lett., 14: 161–164.

    CAS  Google Scholar 

  • Pardo, J.M., Reddy, M.P., Yang, S., Maggio, A., Huh, G.H., Matsumoto, T., Coca, M.A., Paino-D’Urzo, M., Koiwa, H., Yun, D.J., Watad, A.A., Bressan, R.A. and Hasegawa, P.M. (1998). Stress signaling through Ca+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. USA, 95: 9681–9686.

    Article  PubMed  CAS  Google Scholar 

  • Pareek, A., Singh, A., Kumar, M., Kushwaha, H.R., Lynn, A.M. and Singla-Pareek, S.L. (2006). Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol., 142: 380–397.

    Article  PubMed  CAS  Google Scholar 

  • Pareek, A., Singla-Pareek, S.L., Sopory, S.K. and Grover A (2007). Analysis of salt stress related transcriptome fingerprints from diverse plant species. In: Genomics-Assisted Crop Improvement (Eds. Varshney R.K. and Tuberosa R.), Springer (in press).

  • Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T.S., Alexieva, V. and Djilianov, D. (2004). Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol. Biochem., 42: 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K.V.S.K. and Pardha-Saradhi, P. (2004). Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycine betaine biosynthesis into the chloroplasts. Plant Sci., 166: 1197–1212.

    Article  CAS  Google Scholar 

  • Prashanth, S.R., Sadhasivam, V. and Parida, A. (2007). Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res., (In press).

  • Quan, R. Shang, M., Zhang, H., Zhao, Y. and Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotech. J., 2: 477–486.

    Article  CAS  Google Scholar 

  • Rajarathinam, S., Koodalingam, K. and Raja, V.D.G. (1988). Effect of potassium and sodium in rice for tolerance of soil salinity. J. Pot. Res., 4: 174–178.

    Google Scholar 

  • Reddy, A.S. (2001). Calcium: silver bullet in signaling. Plant Sci., 160: 381–404.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, D. and Hanson, A.D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 44: 357–384.

    Article  CAS  Google Scholar 

  • Riano-Pachon, D.M., Ruzicic, S., Dreyer, I. and Mueller-Roeber, B. (2007). PlnTFDB: an integrative plant transcription factor database. BMC Bioinfo., 8: 42.

    Article  CAS  Google Scholar 

  • Rivelli, A.R., James, R.A., Muns, R. and Condon, A.G. (2002). Effect of salinity on water relation and growth of wheat genotypes with contrasting sodium uptake. Funct. Plant Biol., 29: 1065–1074.

    Article  CAS  Google Scholar 

  • Rodríguez, M., Canales, E. and Borrás-Hidalgo, O. (2005). Molecular aspects of abiotic stress in plants. Biotechnol. Applic. 22: 1–10.

    Google Scholar 

  • Rohila, J.S, Jain, R.K. and Wu, R. (2002). Genetic improvement of basmati rice for salt and drought tolerance by regulated expression of a barley HVA1 cDNA. Plant Sci., 163: 525–532.

    Article  CAS  Google Scholar 

  • Roy, M. and Wu, R. (2002). Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci., 163: 987–992.

    Article  CAS  Google Scholar 

  • Roy, M. and Wu, R. (2001). Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci., 160: 869–875.

    Article  PubMed  CAS  Google Scholar 

  • RoyChoudhury, A., Roy, C. and Sengupta, D.N. (2007). Transgenic tobacco plants overexpressing the heterologous LEA gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep. (In press).

  • Rudd, J.J. and Franklin-Tong, V.E. (2001). Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol., 151: 7–33.

    Article  CAS  Google Scholar 

  • Rutger, T.N. (1992). Impact of mutation breeding in rice-a review. Mut. Breed. Rev., 8: 23–25.

    Google Scholar 

  • Sahi, C., Singh, A., Kumar, K., Blumwald, E. and Grover, A. (2006). Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct. Integr. Genomics., 6: 263–284.

    Article  PubMed  CAS  Google Scholar 

  • Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K. and Izui, K. (2000). Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J., 23: 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Sairam, R.K. and Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci., 86: 407–421.

    CAS  Google Scholar 

  • Sakamoto, A, Alia and Murata, N. (1998). Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold. Plant Mol. Biol., 38: 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol., 136: 2734–2746.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, D., Brownlee, C. and Harper, J.F. (1999). Communicating with calcium. Plant Cell, 11: 691–706.

    Article  PubMed  CAS  Google Scholar 

  • Satish, P., Gamborg, O.L. and Nabores, M.W. (1997). Establishment of stable NaCl resistant rice plant lines from anther culture: distribution pattern of K+/Na+ in callus and plant cells. Theor. Appl. Genet., 95: 1203–1209.

    Article  Google Scholar 

  • Scandalios, J.G. (1993). Oxygen stress and superoxide dismutases. Plant Physiol., 101: 7–12.

    PubMed  CAS  Google Scholar 

  • Senadhira, D., Zapata-Arias, F.J., Gregorio, G.B., Alejar, M.S., de la Cruz, H.C., Padolina, T.F. and Galvez, A.M. (2002). Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Res., 76: 103–110.

    Article  Google Scholar 

  • Seo, S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H. and Ohashi, Y. (1995). Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science, 270: 1988–1992.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y.G., Zhang, W.K., He, S.J., Zhang, J.S., Liu, Q. and Chen, S.Y. (2003). An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by coldk dehydration and ABA stress. Theor. Appl. Genet., 106: 923–930.

    PubMed  CAS  Google Scholar 

  • Shi, W.M., Muramoto, Y., Ueda, A. and Takabe, T. (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273: 23–27.

    Article  PubMed  CAS  Google Scholar 

  • Shylaraj, K.S. and Sasidharan, N.K. (2005). VTL 5: A high yielding salinity tolerant rice variety for the coastal saline ecosystems of Kerala.

  • Singla-Pareek, S.L., Reddy, M.K. and Sopory, S.K. (2001). Transgenic approach towards developing abiotic stress tolerance in plants. Proc. Ind. Nat. Sci. Acad., 67: 265–284.

    CAS  Google Scholar 

  • Singla-Pareek, S.L., Reddy, M.K. and Sopory, S.K. (2003). Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc. Natl. Acad. Sci. USA, 100: 14672–14677.

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek, S.L., Pareek, A., and Sopory, S.K. (2007a). Transgenic plants for dry and saline environments. In: Advances in Molecular Breeding towards Salinity and Drought Tolerance (Eds. Jenks M.A. and Hasegawa P.M.), Springer, pp. 501–530.

  • Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K. and Sopory, S.K. (2006). Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol., 140: 613–623.

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K. (2007b). Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res., (In press).

  • Sivamani, E., Bahieldin, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., Ho, T.H.D. and Qu, R. (2000). Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci., 155: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Snedden, W.A. and Fromm, H. (2001). Calmodulin as a versatile calcium signal transducer in plants. New Phytol., 151: 35–66.

    Article  CAS  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 94: 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  • Strynadka, N.C.J., and James, M.N.G. (1989). Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 58: 951–998.

    Article  PubMed  CAS  Google Scholar 

  • Su, J. and Wu, R. (2004). Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci., 166: 941–948.

    Article  CAS  Google Scholar 

  • Su, J., Hirji, R., Zhang, L., He, C., Selvaraj, G. and Wu, R. (2006). Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J. Exp. Bot., 57: 1129–1135.

    Article  PubMed  CAS  Google Scholar 

  • Sugano, S., Kaminaka, H., Rybka, Z., Catala, R., Salinas, J., Matsui, K., Ohme-Takagi, M. and Takatsuji, H. (2003). Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J., 36: 830–841.

    Article  PubMed  CAS  Google Scholar 

  • Sulpice, R., Tsukaya, H., Nonaka, H., Mustardy, L., Chen, T.H.H. and Murata, N. (2003). Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J., 36: 165–176.

    Article  PubMed  CAS  Google Scholar 

  • Surridge, C. (2002). The rice squad. Nature, 416: 576–578.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., Kishitani, S., Takabe, T., Yokota, S. and Takabe, T. (1999). Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci., 148: 131–138.

    Article  CAS  Google Scholar 

  • Tausz, M., Sircelj, H. and Grill, D. (2004). The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J. Exp. Bot., 55: 1955–1962.

    Article  PubMed  CAS  Google Scholar 

  • Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 16: 2481–2498.

    Article  PubMed  CAS  Google Scholar 

  • Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA, 97: 11632–11637.

    Article  PubMed  CAS  Google Scholar 

  • Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T. and Shinozaki, K. (1999). A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell, 11: 1743–1754.

    Article  PubMed  CAS  Google Scholar 

  • Urao, T., Yamaguchi-Shinozaki, K., Urao, S. and Shinozaki, K. (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 5: 1529–1539.

    Article  PubMed  CAS  Google Scholar 

  • Usami, S., Banno, H., Ito, Y., Nishimama, R. and Machida, Y. (1995). Cutting activates a 46-kDa protein kinase in plants. Proc. Natl. Acad. Sci. USA, 92: 8660–8664.

    Article  PubMed  CAS  Google Scholar 

  • Van Camp, W., Capiau, K., Van Montagu, M., Inze, D. and Slooten, L. (1996). Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fesuperoxide dismutase in chloroplasts. Plant Physiol., 112: 1703–1714.

    Article  PubMed  Google Scholar 

  • Verma, D., Singla-Pareek, S.L., Rajagopal, D., Reddy, M.K. and Sopory, S.K. (2007). Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci., 32: 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Vij, S. and Tyagi, A.K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol. J., 5: 361–380.

    Article  PubMed  CAS  Google Scholar 

  • Villalobos, M.A., Bartels, D. and Iturriaga, G. (2004). Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol., 135: 309–324.

    Article  PubMed  CAS  Google Scholar 

  • Vinocur, B. and Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Opin. Biotech., 16: 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Wang, B., Luttge, U. and Ratajczak, R. (2004). Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J. Plant Physiol., 161: 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F.Z., Wang, Q.B., Kwon, S.Y., Kwak, S.S., Su, W.A. (2005a). Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J. Plant Physiol., 162: 465–472.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Zhang, H. and Allen, R.D. (1999). Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol., 40: 725–732.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Wisniewski, M.E., Meilan, R., Webb, R., Fuchigami, L. and Boyer, C. (2005b). Overexpression of cytosolic ascorbate peroxidase in tomato (Lycopersicon esculentum) confers tolerance to chilling and salt stress. J. Am. Soc. Hort. Sci., 130: 167–173.

    CAS  Google Scholar 

  • Wei, W.H., Zhao, W.P., Song, Y.C., Liu, L.H., Guo, L.Q. and Gu, M.G. (2003). Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays x Zea diploperennis. Hereditas, 138: 21–26.

    Article  PubMed  Google Scholar 

  • Weigel, P., Weretilnyk, E.A. and Hanson, A.D. (1986). Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol., 82: 753–759.

    Article  PubMed  CAS  Google Scholar 

  • Wilken, D.R., McMacken, M.L. and Rodriquez, A. (1970). Choline and betaine aldehyde oxidation by rat liver mitochondria. Biochim. Biophys. Acta., 216: 305–317.

    Article  PubMed  CAS  Google Scholar 

  • Willekens, H., Inze, D., Van Montagu, M. and Van Camp, W. (1995). Catalase in plants. Mol. Breed., 1: 207–228.

    Article  CAS  Google Scholar 

  • Wingler, A., Fritzius, T., Wiemken, A., Boller, T. and Aeschbacher, R.A. (2002). Trehalose induced the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol., 124: 105–114.

    Article  Google Scholar 

  • Winicov, I. (1998). New Molecular approaches to improving salt tolerance in crop plants. Ann. Bot., 82: 703–710.

    Article  CAS  Google Scholar 

  • Wu, C.Q., Hu, H.H., Zeng, Y., Liang, D.C., Xie, K.B., Zhang, J.W., Chu, Z.H. and Xiong, L.Z. (2006). Identification of novel stress-responsive transcription factor genes in rice by cDNA array analysis. J. Integr. Plant Biol., 48: 1216–1224.

    Article  CAS  Google Scholar 

  • Xiao-Yan, Y., Fang, Y.A., Wei, Z.K. and Ren, Z.J. (2004). Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot. Sinica, 46: 854–861.

    Google Scholar 

  • Xie, J.H., Zapata, A., Shen, M. and Afza (2000). Salinity tolerant performance and genetic diversity of four rice varieties. Euphytica, 116: 105–110.

    Article  CAS  Google Scholar 

  • Xiong, L. and Yang, Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 15: 745–759.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L. and Zhu, J.K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ., 25: 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Xu, D., Duan, X., Wang, B., Hong, B., T.H.D. Ho, and Wu, R. (1996). Expression of a late embryogenesis abundant protein gene, HVA7, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol., 110: 249–257.

    PubMed  CAS  Google Scholar 

  • Xue, Z.Y., Zhi, D.Y., Xue, G.P., Zhang, H., Zhao, Y.X. and Xia, G.M. (2004). Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci., 167: 849–859.

    Article  CAS  Google Scholar 

  • Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K. and Yoshiba, Y. (2005). Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot., 56: 1975–1981.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, T. and Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plants Sci., 10: 615–620.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress Plant Cell, 6: 251–264.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K. and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci., 10: 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Yan, J., Wang, J, Tissue, D, Holaday, A.S., Allen, R. and Zhang, H. (2003). Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an Arabidopsis ascorbate peroxidase gene. Crop Sci., 43: 1477–1483.

    CAS  Google Scholar 

  • Yang, X., Liang, Z. and Lu, C. (2005). Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol., 138: 2299–2309.

    Article  PubMed  CAS  Google Scholar 

  • Yeo, A.R., Yeo, M.E., Flowers, S.A. & Flowers, T.J. (1990). Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor. Appl. Genet. 79: 377–384.

    Article  Google Scholar 

  • Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., Lee, J.H., Kim, H.S., Lee, S.M., Yoon, H.W., Lim, C.O., Yun, D.J., Lee, S.Y., Chung, W.S., and Cho, M.J. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J. Biol. Chem., 280: 3697–3706.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, Y. (1962). Theoretical studies on the methodological procedures of radiation breeding. Euphytica, 11: 95–111.

    Article  Google Scholar 

  • Zapata, F.J. and Aldemita, R.R. (1986). Induction of salt tolerance in high yielding rice varieties through mutagenesis and anther culture. In: Current Options for Cereal Improvement (Ed. Maluszyns-ki, M.), Kluwer Acad. Pub., Dordrecht, pp. 193–202.

    Google Scholar 

  • Zeng, L. and Shannon, M.C. (2000a). Salinity effects on seedling growth and yield components of rice. Crop Sci., 40: 996–1003.

    Google Scholar 

  • Zeng, L. and Shannon, M.C. (2000b). Effects of salinity on grain yield and yield components of rice at different seeding densities. Agron J., 92: 418–423.

    Google Scholar 

  • Zeng, L., Poss, J.A., Wilson, C., Draz, A.S.E., Gregorio, G.B. and Grieve, C.M. (2003). Evaluation of salt tolerance in rice genotypes by physiological characters. Euphytica, 129: 281–292.

    Article  CAS  Google Scholar 

  • Zeng, L., Shannon M.C. and Lesch, S.M. (2001). Timing of salinity stress affects rice growth and yield components. Agric. Water Manag., 48: 191–206.

    Article  Google Scholar 

  • Zeng, L., Shannon, M.C. and Grieve, C.M. (2002). Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica, 127: 235–245.

    Article  CAS  Google Scholar 

  • Zhang, H.X. and Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotech., 19: 765–768.

    Article  CAS  Google Scholar 

  • Zhang, H.X., Hodson, J.N., Williams, J.P., Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl. Acad. Sci. USA. 98: 12832–12836.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S. and Klessig, D.F. (1998). The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc. Natl. Acad. Sci. USA, 12: 7225–7230.

    Article  Google Scholar 

  • Zhao, F. and Zhang, H. (2006). Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tissue Org. Cult., 86: 349–358.

    Article  CAS  Google Scholar 

  • Zhao, F., Guo, S., Zhang, H. and Zhao, Y. (2006). Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci., 170: 216–224.

    Article  CAS  Google Scholar 

  • Zhao, F., Wang, Z., Zhang, Q., Zhao, Y. and Zhang, H. (2006). Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J. Plant Res., 119: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, B.S., Yang, L., Zhang, W.P., Mao, C.Z., Wu, Y.R., Yi, K.K., Liu, F.Y. and Wu, P. (2003). Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor. Appl. Genet., 207: 1505–1515.

    Article  CAS  Google Scholar 

  • Zhu, B., Su, J., Chang, M., Verma, DPS, Fan, Y.L. and Wu, R. (1998). Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci., 139: 41–48.

    Article  CAS  Google Scholar 

  • Zhu, J.K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis thaliana. Plant Physiol., 124: 941–948.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K. (2001). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol., 4: 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol., 53: 247–273.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K. (2003). Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol., 6: 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Zielinski, R.E. (1998). Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49: 697–725.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneh L. Singla-Pareek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A.K., Ansari, M.W., Pareek, A. et al. Raising salinity tolerant rice: recent progress and future perspectives. Physiol Mol Biol Plants 14, 137–154 (2008). https://doi.org/10.1007/s12298-008-0013-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-008-0013-3

Key words

Navigation