Skip to main content
Log in

Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for biocatalytic resolution of racemic styrene oxide and styrene oxide derivatives

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Archelas A, Furstoss R (1997) Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol 51:491–525

    Article  PubMed  CAS  Google Scholar 

  • Archelas A, Furstoss R (2001) Synthetic applications of epoxide hydrolases. Curr Opin Chem Biol 5:112–119

    Article  PubMed  CAS  Google Scholar 

  • Besse P, Veschambre H (1994) Chemical and biological synthesis of chiral epoxides. Tetrahedron 50:8885–8892

    Article  CAS  Google Scholar 

  • Chen C-S, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299

    Article  CAS  Google Scholar 

  • Choi SH, Kim HS, Lee EY (2009) Comparative homology modeling-inspired protein engineering for improvement of catalytic activity of Mugil cephalus epoxide hydrolase. Biotechnol Lett 31:1617–1624

    Article  PubMed  CAS  Google Scholar 

  • de Vries EJ, Janssen DB (2003) Biocatalytic conversion of epoxides. Curr Opin Biotechnol 14:414–420

    Article  PubMed  Google Scholar 

  • Grogan G, Roberts SM, Willetts AJ (1996) Novel aliphatic epoxide hydrolase activities from dematiaceous fungi. FEMS Microbiol Lett 141:239–243

    Article  PubMed  CAS  Google Scholar 

  • Hwang Y-O, Kang SG, Woo J-H, Kwon KK, Sato T, Lee EY, Han MS, Kim S-J (2008) Screening enantioselective epoxide hydrolase activities from marine microorganisms: detection of activities in Erythrobacter spp. Marine Biotechnol 10:366–373

    Article  CAS  Google Scholar 

  • Hwang S, Choi CY, Lee EY (2010) Bio- and chemo-catalytic preparation of chiral epoxides. J Ind Eng Chem 16:1–6

    Article  CAS  Google Scholar 

  • Jia X, Wang Z, Li Z (2008) Preparation of (S)-2-, 3-, and 4-chlorostyrene oxides with the epoxide hydrolase from Sphingomonas sp. HXN-200. Tetrahedron: Asymmetry 19:407–415

    Article  CAS  Google Scholar 

  • Karboune S, Archelas A, Baratti JC (2010) Free and immobilized Aspergillus niger epoxide hydrolase-catalyzed hydrolytic kinetic resolution of racemic p-chlorostyrene oxide in a neat organic solvent medium. Process Biochem 45:210–215

    Article  CAS  Google Scholar 

  • Kasai N, Suzuki T, Furukawa Y (1998) Chiral C3 epoxides and halohydrins: their preparation and synthetic application. J Mol Catal B Enzym 4:237–252

    Article  CAS  Google Scholar 

  • Kim HS, Lee OK, Hwang S, Kim BJ, Lee EY (2008) Biosynthesis of (R)-phenyl-1,2-ethanediol from racemic styrene oxide by using bacterial and marine fish epoxide hydrolases. Biotechnol Lett 30:127–133

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman M, Elferink VHM, van Iersel J, Roskam JH, Meijer EM, Hulshof LA, Sheldon RA (1988) Lipase in the preparation of β-blockers. Trends Biotechnol 6:251–256

    Article  CAS  Google Scholar 

  • Kwon T-H, Kim J-T, Kim J-S (2010) Application of a modified sublimation method to screen for PAH-degrading microorganisms. Korean J Microbiol 46:109–111

    Article  Google Scholar 

  • Lee EY (2008) Epoxide hydrolase-mediated enantioconvergent bioconversions to prepare chiral epoxides and alcohols. Biotechnol Lett 30:1509–1514

    Article  PubMed  CAS  Google Scholar 

  • Orru RV, Faber K (1999) Stereoselectivities of microbial epoxide hydrolases. Curr Opin Chem Biol 3:16–21

    Article  PubMed  CAS  Google Scholar 

  • Straathof AJJ, Jongejan JA (1997) The enantiomeric ratio: origin, determination and prediction. Enzym Microb Technol 21:559–571

    Article  CAS  Google Scholar 

  • Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN (1997) Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 277:936–938

    Article  PubMed  CAS  Google Scholar 

  • van Loo B, Kingma J, Arand M, Wubbolts MG, Janssen DB (2006) Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis. Appl Environ Microbiol 72:2905–2917

    Article  PubMed  Google Scholar 

  • Weijers CAGM, de Bont JAM (1999) Epoxide hydrolases from yeasts and other sources: versatile tools in biocatalysis. J Mol Catal B Enzym 6:199–214

    Article  CAS  Google Scholar 

  • Woo J-H, Hwang O-K, Kang SG, Lee HS, Cho J, Kim S-J (2007) Cloning and characterization of three novel epoxide hydrolases from a marine bacterium, Erythrobacter litoralis HTCC2594. Appl Microbiol Biotechnol 76:365–375

    Article  PubMed  CAS  Google Scholar 

  • Woo J-H, Kang JH, Kang SG, Hwang O-K, Kim S-J (2009) Cloning and characterization of an epoxide hydrolase from Novosphingovium aromaticivorans. Appl Microbiol Biotechnol 82:873–881

    Article  PubMed  CAS  Google Scholar 

  • Woo J-H, Hwang O-K, Kang JH, Kim S-J, Kang SG (2010a) Enantioselective hydrolysis of racemic epichlorohydrin using an epoxide hydrolase from Novosphingobium aromaticivorans. J Biosci Bioeng 110:295–297

    Article  PubMed  CAS  Google Scholar 

  • Woo J-H, Kang JH, Hwang O-K, Cho J, Kim S-J, Kang SG (2010b) Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Rhodobacterales bacterium HTCC2654. J Biosci Bioeng 109:539–544

    Article  PubMed  CAS  Google Scholar 

  • Yeate CA, Krie HM, Breytenbac JC (2007) Hydroxypropyl-beta-cyclodextrin induced complexation for the biocatalytic resolution of a poorly soluble epoxide. Enzym Microb Technol 40:228–235

    Article  Google Scholar 

Download references

Acknowledgments

This work supported by GIMB in-House R&D Program and the Marine and Extreme Genome Research Centre Program, Ministry of Land, Transport and Maritime Affairs, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Hee Woo or Eun Yeol Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, JH., Kwon, TH., Kim, JT. et al. Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for biocatalytic resolution of racemic styrene oxide and styrene oxide derivatives. Biotechnol Lett 35, 599–606 (2013). https://doi.org/10.1007/s10529-012-1114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1114-1

Keywords

Navigation