Skip to main content
Log in

Comparative homology modeling-inspired protein engineering for improvement of catalytic activity of Mugil cephalus epoxide hydrolase

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The epoxide hydrolase (EH) of a marine fish, Mugil cephalus, was engineered to improve the catalytic activity based on comparative homology modeling. The 3-D crystal structure of the EH from Aspergillus niger was used as a template. A triple point mutant, F193Y for spatial orientation of the nucleophile (D199), W200L for removing electron density overlap between W200 and Y348, and E378D for good charge relay in the active site, was developed. The initial hydrolysis rate, the reaction time to reach 98 %ee, and yield were enhanced up to 35-fold, 26-fold and 32%, respectively, by homology modeling-inspired site-directed mutagenesis of M. cephalus EH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arand M, Muller F, Mecky A, Hinz W, Urban P, Pompon D, Kellner R, Oesch F (1999) Catalytic triad of microsomal epoxide hydrolase: replacement of Glu404 with Asp leads to a strongly increased turnover rate. Biochem J 337:37–43

    Article  PubMed  CAS  Google Scholar 

  • Archelas A, Furstoss R (2001) Synthetic applications of epoxide hydrolases. Curr Opin Chem Biol 5:112–119

    Article  PubMed  CAS  Google Scholar 

  • Barth S, Fischer M, Schmid RD, Pleiss J (2004) The database of epoxide hydrolase and haloalkane dehalogenases: one structure, many functions. Bioinformatics 20:2845–2847

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Lee J, Chen JW, Wood TK (2006) Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum and an evolved Agrobacterium radiobacter AD1 epoxide hydrolases. Biotechnol Bioeng 94:522–529

    Article  PubMed  CAS  Google Scholar 

  • Cedrone F, Niel S, Ait-abdelkader N, Torre C, Krumm H, Roca S, Bhatnagar T, Maichele A, Reetz MT, Baratti JC (2003) Directed evolution of the epoxide hydrolase from Aspergillus niger. Biocatal Biotransformation 21:357–364

    Article  CAS  Google Scholar 

  • Hwang S, Choi CY, Lee EY (2008a) One-pot biotransformation of racemic styrene oxide into (R)-1,2-phenylethandiol by two recombinant microbial epoxide hydrolases. Biotechnol Bioprocess Eng 13:274–278

    Article  Google Scholar 

  • Hwang Y-O, Kang SG, Woo J-H, Kwon KK, Sato T, Lee EY, Han MS, Kim S-J (2008b) Screening enantioselective epoxide hydrolase activities from marine microorganisms: detection of activities in Erythrobacter spp. Mar Biotechnol 10:366–373

    Article  PubMed  CAS  Google Scholar 

  • Karboune S, Archelas A, Baratti J (2006) Properties of epoxide hydrolase from Aspergillus niger for the hydrolytic kinetic resolution of epoxides in pure organic media. Enzyme Microb Technol 39:318–324

    Article  CAS  Google Scholar 

  • Kim HS, Lee SJ, Lee EY (2006) Development and characterization of recombinant whole-cell biocatalysts expressing epoxide hydrolase from Rhodotorula glutinis for enantioselective resolution of racemic epoxides. J Mol Catal B 43:2–8

    Article  CAS  Google Scholar 

  • Kim HS, Lee OK, Hwang S, Kim BJ, Lee EY (2008) Biosynthesis of (R)-phenyl-1,2-ethanediol from racemic styrene oxide by using bacterial and marine fish epoxide hydrolases. Biotechnol Lett 30:127–133

    Article  PubMed  CAS  Google Scholar 

  • Kronenburg NAE, de Bont JAM (2001) Effects of detergents on specific activity and enantioselectivity of the epoxide hydrolase from Rhodotorula glutinis. Enzyme Microb Technol 28:210–217

    Article  CAS  Google Scholar 

  • Lee EY (2007) Enantioselective hydrolysis of epichlorohydrin in organic solvents using recombinant epoxide hydrolase. J Ind Eng Chem 13:159–162

    CAS  Google Scholar 

  • Lee EY (2008) Epoxide hydrolase-mediated enantioconvergent bioconversions to prepare chiral epoxides and alcohols. Biotechnol Lett 30:1509–1514

    Article  PubMed  CAS  Google Scholar 

  • Lee EY, Shuler ML (2007) Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis. Biotechnol Bioeng 98:318–327

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Kim HS, Kim SJ, Park S, Kim BJ, Shuler ML, Lee EY (2007) Cloning, expression and enantioselective hydrolytic catalysis of a microsomal epoxide hydrolase from a marine fish, Mugil cephalus. Biotechnol Lett 29:237–246

    Article  PubMed  CAS  Google Scholar 

  • Nardini M, Ridder IS, Rozeboom HJ, Kalk KH, Rink R, Janssen DB, Dijkstra BW (1999) The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1. J Biol Chem 274:14579–14596

    Article  PubMed  CAS  Google Scholar 

  • Reetz MT (2006) Directed evolution of enantioselective enzymes as catalysts for organic synthesis. Adv Catal 49:1–69

    Article  CAS  Google Scholar 

  • Reetz MT, Torre C, Eipper A, Lohmer R, Hermes M, Brunner B, Maichele A, Bocola M, Arand M, Cronin A, Genzel Y, Archelas A, Furstoss R (2004) Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Org Lett 6:177–180

    Article  PubMed  CAS  Google Scholar 

  • Rink R, Spelberg JHL, Pieters RJ, Kingma J, Nardini M, Kellogg RM, Dijkstra BW, Janssen DB (1999) Mutation of tyrosine residues involved in the alkylation half reaction of epoxide hydrolase from Agrobacterium radiobacter AD1 results in improved enantioselectivity. J Am Chem Soc 121:7417–7418

    Article  CAS  Google Scholar 

  • Rui L, Cao L, Chen W, Reardon KF, Wood TK (2004) Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase. J Biol Chem 279:46810–46817

    Article  PubMed  CAS  Google Scholar 

  • Rui L, Cao L, Chen W, Reardon KF, Wood TK (2005) Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-1,2-diol. Appl Environ Microbiol 71:3995–4003

    Article  PubMed  CAS  Google Scholar 

  • Schrader W, Eipper A, Pugh Dj, Reetz MT (2002) Second-generation MS-based high-throughput screening system for enantioselective catalysis and biocatalysis. Can J Chem 80:626–632

    Article  CAS  Google Scholar 

  • Strauss UT, Felfer U, Faber K (1999) Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess. Tetrahedron 10:107–117

    Article  CAS  Google Scholar 

  • van Loo B, Spelberg JHL, Kingma J, Sonke T, Wubbolts MG, Janssen DB (2004) Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. Chem Biol 11:981–990

    Article  PubMed  Google Scholar 

  • Zou J, Hallberg BM, Bergfors T, Oesch F, Arand M, Mowbray SL, Jones TA (2000) Structure of Aspergillus niger epoxide hydrolase at 1.8 Å resolution: implication for the structure and function of the mammalian microsomal class of epoxide hydrolases. Structure 8:111–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marine and Extreme Genome Research Center Program, Ministry of Land, Transportation and Maritime Affairs, Republic of Korea. The stipend for S. H. Choi was partially supported by the Ministry of Knowledge Economy (MKE) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Strategic Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hee Sook Kim or Eun Yeol Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.H., Kim, H.S. & Lee, E.Y. Comparative homology modeling-inspired protein engineering for improvement of catalytic activity of Mugil cephalus epoxide hydrolase. Biotechnol Lett 31, 1617–1624 (2009). https://doi.org/10.1007/s10529-009-0055-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0055-9

Keywords

Navigation