Skip to main content
Log in

The Degradation of Phenanthrene, Pyrene, and Fluoranthene and Its Conversion into Medium-Chain-Length Polyhydroxyalkanoate by Novel Polycyclic Aromatic Hydrocarbon-Degrading Bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Screening of high-efficient polycyclic aromatic hydrocarbon (PAH)-degrading bacteria is important due to environmental contamination by PAHs. In this study, sediment contaminated with phenanthrene (Phe), pyrene (Pyr), and fluoranthene (Fluo) was used as a source of bacteria. The ability of these isolated bacteria to convert PAHs into valuable products was determined. Based on a primary screening, 20 bacterial isolates were obtained; however, only three strains showed a good PAH-degrading ability, and were identified as Pseudomonas aeruginosa, Pseudomonas sp., and Ralstonia sp. PAH-degrading genes were detected in all isolates. Notably, all selected strains could degrade PAHs using the ortho or meta cleavage pathways due to the presence of catechol dioxygenase genes. The ability of isolated strains to convert PAHs into polyhydroxyalkanoate (PHA) was also evaluated in both single and mixed cultures. Single cultures of P. aeruginosa PAH-P02 showed 100% degradation of PAHs, with the highest biomass (1.27 ± 0.02 g l−1) and PHA content (38.20 ± 1.92% dry cell weight). However, degradative ability and PHA production were decreased when mixtures of PAHs were used. This study showed that P. aeruginosa, Pseudomonas sp., and Ralstonia sp. were able to degrade PAHs and convert them into medium-chain-length (mcl)-PHA. A high content of 3-hydroxydecanoate (3HD, C10) was observed in this study. The formation of mcl-PHA with high 3HD content from Pyr and Fluo, and the assessment of mixed cultures converting PAHs to mcl-PHA, were novel contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Narancic T, Kenny ST, Djokic L, Vasiljevic B, O’Connor KE, Nikodinovic-Runic J (2012) Medium-chain-length polyhydroxyalkanoate production by newly isolated Pseudomonas sp. TN301 from a wide range of polyaromatic and monoaromatic hydrocarbons. J Appl Microbiol 113:508–520. https://doi.org/10.1111/j.1365-2672.2012.05353.x

    Article  PubMed  CAS  Google Scholar 

  2. Qi YB, Wang CY, Lv CY, Lun ZM, Zheng CG (2017) Removal capacities of polycyclic aromatic hydrocarbons (PAHs) by a newly isolated strain from oilfield produced water. Int J Environ Res Public Health 14:215. https://doi.org/10.3390/ijerph14020215

    Article  PubMed Central  CAS  Google Scholar 

  3. Dong DM, Liu XX, Hua XY, Guo ZY, Li LF, Zhang LW, Xie YJ (2016) Sedimentary record of polycyclic aromatic hydrocarbons in Songhua River, China. Environ Earth Sci 75:508–515. https://doi.org/10.1007/s12665-015-5123-y

    Article  CAS  Google Scholar 

  4. Schneider IL, Teixeira EC, Agudelo-Castaneda DM, e Silva GS, Balzaretti N, Braga MF, Oliveira LFS (2016) FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci Total Environ 541:1151–1160. https://doi.org/10.1016/j.scitotenv.2015.09.142

    Article  PubMed  CAS  Google Scholar 

  5. Boonyatumanond R, Wattayakorn G, Togo A, Takada H (2006) Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Mar Pollut Bull 52:942–956. https://doi.org/10.1016/j.marpolbul.2005.12.015

    Article  PubMed  CAS  Google Scholar 

  6. Alegbeleye OO, Opeolu BO, Jackson V (2017) Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Braz J Microbiol 48:314–325. https://doi.org/10.1016/j.bjm.2016.07.027

    Article  PubMed  CAS  Google Scholar 

  7. Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243. https://doi.org/10.1271/bbb.67.225

    Article  PubMed  CAS  Google Scholar 

  8. Zhao B, Wang H, Mao X, Li R (2009) A rapid screening method for bacteria degrading polycyclic aromatic hydrocarbons. Lett Appl Microbiol 49:408–410. https://doi.org/10.1111/j.1472-765X.2009.02668.x

    Article  PubMed  CAS  Google Scholar 

  9. Maiti A, Das S, Bhattacharyya N (2013) High gelatinase activity of a newly isolated polycyclic aromatic hydrocarbon degrading bacteria Bacillus weihenstephanensis strain AN1. J Pharm Res 6:199–204. https://doi.org/10.1016/j.jopr.2012.11.041

    Article  CAS  Google Scholar 

  10. Fu B, Li QX, Xu T, Cui ZL, Sun Y, Li J (2014) Sphingobium sp. FB3 degrades a mixture of polycyclic aromatic hydrocarbons. Int Biodeterior Biodegrad 87:44–51. https://doi.org/10.1016/j.ibiod.2013.10.024

    Article  CAS  Google Scholar 

  11. Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresource Technol 224:25–33. https://doi.org/10.1016/j.biortech.2016.11.095

    Article  CAS  Google Scholar 

  12. Nikodinovic J, Kenny ST, Babu RP, Woods T, Blau WJ, O’ Connor KE (2008) The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Appl Microbiol Biotechnol 80:665–673. https://doi.org/10.1007/s00253-008-1593-0

    Article  PubMed  CAS  Google Scholar 

  13. Ward PG, de Roo G, O’Connor KE (2005) Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl Environ Microbiol 71:2046–2052. https://doi.org/10.1128/AEM.71.4.2046-2052.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liang Q, Lloyd-Jones G (2011) Formation of poly-β-hydroxybutyrate from polycyclic aromatic hydrocarbons by Sphingobium scionense sp. WP01. 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, China. pp 2448–2451. https://doi.org/10.1109/CDCIEM.2011.120

  15. Ward PG, O’Connor KE (2005) Bacterial synthesis of polyhydroxyalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int J Biol Macromol 35:127–133. https://doi.org/10.1016/j.ijbiomac.2005.01.001

    Article  PubMed  CAS  Google Scholar 

  16. Deelaman W (2009) Distribution of polycyclic aromatic hydrocarbons (PAHs) in sediment from Outer Songkhla Lake, Songkhla Province, and Ao Tap Lamu, Phang-nga Province. Thesis for Master of Science in Environmental Management, Prince of Songkla University (in Thai).

  17. Dong CD, Chen CF, Chen CW (2012) Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS. Int J Environ Res Public Health 9:2175–2188. https://doi.org/10.3390/ijerph9062175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Haleyur N, Shahsavari E, Taha M, Khudur LS, Koshlaf E, Osborn AM, Ball AS (2018) Assessing the degradation efficacy of native PAH-degrading bacteria from aged, weathered soils in an Australian former gasworks site. Geoderma 321:110–117. https://doi.org/10.1016/j.geoderma.2018.02.004

    Article  CAS  Google Scholar 

  19. Sei K, Asano K, Tateishi N, Mori K, Ike M, Fujita M (1999) Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways. J Biosci Bioeng 88:542–550. https://doi.org/10.1016/s1389-1723(00)87673-2

    Article  PubMed  CAS  Google Scholar 

  20. Laurie AD, Lloyd-Jones G (2000) Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl Environ Microbiol 66:1814–1817. https://doi.org/10.1128/aem.66.5.1814-1817.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kloos K, Munch JC, Schloter M (2006) A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J Microbiol Methods 66:486–496. https://doi.org/10.1016/j.mimet.2006.01.014

    Article  PubMed  CAS  Google Scholar 

  22. Powell SM, Ferguson SH, Bowman JP, Snape I (2006) Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb Ecol 52:523–532. https://doi.org/10.1007/s00248-006-9131-z

    Article  PubMed  CAS  Google Scholar 

  23. Cébron A, Norini M, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159. https://doi.org/10.1016/j.mimet.2008.01.009

    Article  PubMed  CAS  Google Scholar 

  24. Erdogmuş SF, Mutlu B, Korcan SE, Güven K, Konuk M (2013) Aromatic hydrocarbon degradation by halophilic archaea isolated from Camalti Saltern, Turkey. Water Air Soil Pollut 224:1449–1457. https://doi.org/10.1007/s11270-013-1449-9

    Article  CAS  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microorganism quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/abio.1976.9999

    Article  PubMed  CAS  Google Scholar 

  26. Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Amund OO (2008) Pyrene-degradation potentials of Pseudomonas sp. isolated from polluted tropical soils. World J Microbiol Biotechnol 24:2639–2646. https://doi.org/10.1007/s11274-008-9790-7

    Article  CAS  Google Scholar 

  27. Hegeman GD (1966) Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida I. Synthesis of enzymes by the wild type. J Bacteriol 91:1140–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbuchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Ach Microbiol 171:73–80. https://doi.org/10.1007/s002030050681

    Article  CAS  Google Scholar 

  29. Riis V, Mai W (1988) Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J Chromatogr 445:285–289. https://doi.org/10.1016/S0021-9673(01)84535-0

    Article  CAS  Google Scholar 

  30. Zhang H, Sun L, Sun T, Li H, Luo Q (2013) Spatial distribution and seasonal variation of polycyclic aromatic hydrocarbons (PAHs) contaminations in surface water from the Hun River, Northeast China. Environ Monit Assess 185:1451–1462. https://doi.org/10.1007/s10661-012-2644-7

    Article  PubMed  CAS  Google Scholar 

  31. Zhu X, Ni X, Waigi MG, Liu J, Sun K, Gao Y (2016) Biodegradation of mixed PAHs by PAH-degrading endophytic bacteria. Int J Environ Res Public Health 13:805. https://doi.org/10.3390/ijerph13080805

    Article  PubMed Central  CAS  Google Scholar 

  32. Moharikar A, Kapley A, Purohit HJ (2003) Detection of dioxygenase genes present in various activated sludge. Environ Sci Pollut Res 10:373–378. https://doi.org/10.1065/espr2003.07.164

    Article  CAS  Google Scholar 

  33. Sei K, Inoue D, Wada K (2004) Monitoring behavior of catabolic genes and change of microbial community structures in seawater microcosms during aromatic compound degradation. Water Res 38:4405–4414. https://doi.org/10.1016/j.watres.2004.08.028

    Article  PubMed  CAS  Google Scholar 

  34. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248. https://doi.org/10.1016/S0167-7799(02)01943-1

    Article  PubMed  CAS  Google Scholar 

  35. Cébron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyyal C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13:722–736. https://doi.org/10.1111/j.1462-2920.2010.02376.x

    Article  PubMed  CAS  Google Scholar 

  36. Thomas F, Lorgeoux C, Faure P, Billet D, Cébron A (2016) Isolation and substrate screening of polycyclic aromatic hydrocarbon degrading bacteria from soil with long history of contamination. Int Biodeterior Bioderad 107:1–9. https://doi.org/10.1016/j.ibiod.2015.11.004

    Article  CAS  Google Scholar 

  37. Bacosa HP, Inoue C (2015) Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi. J Hazard Mater 283:689–697. https://doi.org/10.1016/j.jhazmert.2014.09.068

    Article  PubMed  CAS  Google Scholar 

  38. Ma J, Xu L, Jia LY (2013) Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge. Bioresour Technol 140:15–21. https://doi.org/10.1016/j.biortech.2013.03.184

    Article  PubMed  CAS  Google Scholar 

  39. Zhong Y, Zou SC, Lin L, Luan TG, Qiu RL, Tam NFY (2010) Effects of pyrene and fluoranthene on the degradation characteristics of phenanthrene in the cometabolism process by Sphingomonas sp. strain PheB4 isolated from mangrove sediments. Mar Pollut Bull 60:2043–2049. https://doi.org/10.1016/j.marpolbul.2010.07.017

    Article  PubMed  CAS  Google Scholar 

  40. Di Martino C, Catone M, Lopez N, Raiger Iustman L (2014) Polyhydroxyalkanoate synthesis affects biosurfactant production and cell attachment to hydrocarbons in Pseudomonas sp. KA-08. Curr Microbiol 68:735–742. https://doi.org/10.1007/s00284-014-0536-5

    Article  PubMed  CAS  Google Scholar 

  41. Pham TH, Webb JS, Rehm BH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413. https://doi.org/10.1099/mic.0.27357-0

    Article  PubMed  CAS  Google Scholar 

  42. Goudarztalejerdi A, Tabatabaei M, Eskandari MH, Mowla D, Iraji A (2015) Evaluation of bioremediation potential and biopolymer production of pseudomonads isolated from petroleum hydrocarbon-contaminated areas. Int J Environ Sci Technol 12:2801–2808. https://doi.org/10.1007/s13762-015-0779-0

    Article  CAS  Google Scholar 

  43. Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) The role of microorganisms in bioremediation—a review. Open J Environ Biol 1:38–46. https://doi.org/10.17352/ojeb.000007

    Article  Google Scholar 

  44. Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF (2018) Understanding and designing the strategies for the mircrobe-mediated remediation of environmental contaminants using omics approaches. Front Mircrobiol 9:1132. https://doi.org/10.3389/fmicb.2018.01132

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Thailand Research Fund (TRF) Grant for Researcher (project number RSA 6180066 and RTA6080010) and the Research and Development Institute at Thaksin University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanokphorn Sangkharak.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangkharak, K., Choonut, A., Rakkan, T. et al. The Degradation of Phenanthrene, Pyrene, and Fluoranthene and Its Conversion into Medium-Chain-Length Polyhydroxyalkanoate by Novel Polycyclic Aromatic Hydrocarbon-Degrading Bacteria. Curr Microbiol 77, 897–909 (2020). https://doi.org/10.1007/s00284-020-01883-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01883-x

Navigation