Skip to main content
Log in

Errors in determining the flow rate of Hirst-type pollen traps

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Standardisation of methods of pollen monitoring networks is vital for data quality. In pollen monitoring networks in Europe, the Hirst-type trap is standard. Hirst traps are calibrated with handheld rotameters. We detected a systematic error in the flow rate calibrated by these standard handheld rotameters. We measured the flow rate of 19 Hirst traps from three commercial brands during calibration but also during monitoring. We used three different rotameters supplied by the manufacturers of the traps, respectively. The actual air flow rate was measured using an electronic heat anemometer with negligible air flow resistance. After calibration to 10 l/min, the rotameter was removed, which led to a significant increase in the flow rate in the range of 10.5–17.2 l/min, a systematic error between 5 and 72%. No significant difference was found between the different commercial trap brands. The analysis revealed that the error depended on the type of the rotameter and the individual trap. The error may be explained by the additional air flow resistance of each rotameter. The total resistance of the system—trap plus rotameter—is higher during calibration when the rotameter is held on the inlet compared to the routine monitoring without the rotameter. Depending on the characteristic curve of the suction pump in the trap (fan), the air flow rate increases to values considerably higher than 10 l/min. Thus, monitoring is done under a higher flow rate than that was calibrated. In order to obtain comparable data within a monitoring network, a solution for correction of this systematic error seems advisable, preferably in cooperation with the manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See, for example, http://www.lanzoni.it/vpps-2010.html.

References

  • Alcázar, P., Galán, C., Cariñanos, P., & Dominguez-Vilches, E. (1999). Effects of sampling height and climatic conditions in aerobiological studies. Journal of Investigational Allergology and Clinical Immunology, 9, 253–261.

    Google Scholar 

  • Berti, G., Isocrono, D., Ropolo, L., Caranci, N., Cesare, M. R., Fossa, V., et al. (2009). An experience of data quality evaluation in pollen monitoring activities. Journal of Environmental Monitoring, 11, 788–792.

    Article  CAS  Google Scholar 

  • Burge, H. A., Jelks, M. L., & Chapman, J. A. (1986). Quality-control of multisource aeroallergen data. Grana, 25, 247–250.

    Article  Google Scholar 

  • Buters, J. (2014). Pollen allergens and geographical factors. In: C. Akdis and I. Agache (eds.) Global Atlas of Allergy No. 1. p 36–37. European Academy of Allergy and Clinical Inmunology (EAACI), Zurich.

  • Buters, J., Prank, M., Sofiev, M., Pusch, G., Albertini, R., Annesi-Maesano, I., et al. (2015). Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. Journal of Allergy and Clinical Immunology, 136(1), 87–95.

    Article  CAS  Google Scholar 

  • Buters, J. T., Thibaudon, M., Smith, M., Kennedy, R., Rantio-Lehtimäki, A., Albertini, R., et al. (2012). Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmospheric Environment, 55, 496–505.

    Article  CAS  Google Scholar 

  • Cariñanos, P., Emberlin, J., Galán, C., & Dominguez-Vilches, E. (2000). Comparison of two pollen counting methods of slides from a hirst type volumetric trap. Aerobiologia, 16, 339–346.

    Article  Google Scholar 

  • Carvalho, E., Sindt, C., Verdier, A., Galán, C., O’Donoghue, L., Parks, S., et al. (2008). Performance of the Coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains. Aerobiologia, 24, 191–201.

    Article  Google Scholar 

  • CEN/TS 16868. (2015). Ambient air. Sampling and analysis of airborne pollen grains and fungal spores for allergy networks. Volumetric Hirst method.

  • Comtois, P., Alcazar, P., & Néron, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15, 19–28.

    Article  Google Scholar 

  • Comtois, P., & Mandrioli, P. (1997). Pollen capture media: A comparative study. Aerobiologia, 13, 149–154.

    Article  Google Scholar 

  • Cotos-Yáñez, T. R., Rodríguez-Rajo, F. J., Pérez-González, A., Aira, M. J., & Jato, V. (2012). Quality control in aerobiology: Comparison different slide reading methods. Aerobiologia, 29, 1–11.

    Article  Google Scholar 

  • Cunha, M., Ribeiro, H., & Abreu, I. (2016). Pollen-based predictive modelling of wine production: Application to an arid region. European Journal of Agronomy, 73, 42–54.

    Article  Google Scholar 

  • de Weger, L. A., Beerthuizen, T., Hiemstra, P. S., & Sont, J. K. (2014). Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis. International Journal of Biometeorology, 58, 1047–1055.

    Google Scholar 

  • Galán, C., & Domínguez-Vilches, E. (1997). The capture media in aerobiological sampling. Aerobiologia, 13, 155–160.

    Article  Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.

    Article  Google Scholar 

  • Giesecke, T., Fontana, S. L., van der Knaap, W. O., Pardoe, H. S., & Pidek, I. A. (2010). From early pollen trapping experiments to the Pollen Monitoring Programme. Vegetation History and Archaeobotany, 19(4), 247–258.

    Article  Google Scholar 

  • Gottardini, E., Cristofolini, F., Cristofori, A., Vannini, A., & Ferretti, M. (2009). Sampling bias and sampling errors in pollen counting in aerobiological monitoring in Italy. Journal of Environmental Monitoring, 11, 751–755.

    Article  CAS  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257.

    Article  Google Scholar 

  • Hofmann, F., Kruse-Plass, M., Kuhn, U., Otto, M., Schlechtriemen, U., Schröder, B., et al. (2016). Accumulation and variability of maize pollen deposition on leaves of European Lepidoptera host plants and relation to release rates and deposition determined by standardised technical sampling. Environmental Sciences Europe, 28, 14.

    Article  Google Scholar 

  • Käpylä, M., & Penttinen, A. (1981). An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana, 20, 131–141.

    Article  Google Scholar 

  • Karrer, G., Skjøth, C. A., Šikoparija, B., Smith, M., Berger, U., & Essl, F. (2015). Ragweed (Ambrosia) pollen source inventory for Austria. The Science of the Total Environment, 523, 120–128.

    Article  CAS  Google Scholar 

  • Levetin, E., Rogers, C. A., & Hall, S. A. (2000). Comparison of pollen sampling with a Burkard Spore Trap and a Tauber Trap in a warm temperate climate. Grana, 39, 294–302.

    Article  Google Scholar 

  • Mandrioli, P., Comtois, P., Dominguez-Vilches, E., Galán, C., Isard, S., & Syzdek, L. (1998). Sampling: Principles and techniques. In P. Mandrioli, P. Comtois & V. Levizzani (Eds.), Methods in aerobiology (pp. 47–112). Bologna: Pitagora Editrice Bologna.

  • Orlandi, F., Oteros, J., Aguilera, F., Dhiab, A. B., Msallem, M., & Fornaciari, M. (2014). Design of a downscaling method to estimate continuous data from discrete pollen monitoring in Tunisia. Environmental science: Processes & impacts, 16, 1716–1725.

    CAS  Google Scholar 

  • Oteros, J., Galán, C., Alcázar, P., & Dominguez-Vilches, E. (2013). Quality control in bio-monitoring networks, Spanish Aerobiology Network. The Science of the Total Environment, 443, 559–565.

    Article  CAS  Google Scholar 

  • Oteros, J., Orlandi, F., García-Mozo, H., Aguilera, F., Dhiab, A. B., Bonofiglio, T., et al. (2014). Better prediction of Mediterranean olive production using pollen-based models. Agronomy for Sustainable Development, 34, 685–694.

    CAS  Google Scholar 

  • Pedersen, B. V., & Moseholm, L. (1993). Precision of the daily pollen count. Identifying sources of variation using variance component models. Aerobiologia, 9, 15–26.

    Article  Google Scholar 

  • R-Team, C. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (http://www.R-project.org).

  • Šikoparija, B., Galán, C., Smith, M., & EAS QC Working Group. (2016). Pollen-monitoring: between analyst proficiency testing. Aerobiologia. doi:10.1007/s10453-016-9461-3.

    Google Scholar 

  • Šikoparija, B., Pejak-Šikoparija, T., Radisic, P., Smith, M., & Galán, C. (2011). The effect of changes to the method of estimating the pollen count from aerobiological samples. Journal of Environmental Monitoring, 13, 384–390.

    Article  Google Scholar 

  • Šikoparija, B., Smith, M., Skjøth, C. A., Radišić, P., Milkovska, S., Šimić, S., et al. (2009). The Pannonian plain as a source of Ambrosia pollen in the Balkans. International Journal of Biometeorology, 53, 263–272.

    Article  Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimaki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402.

    Article  CAS  Google Scholar 

  • Thibaudon, M., Galán, C., Lanzoni, C., & Monnier, S. (2015). Validation of a new adhesive coating solution: Comparative study of carbon tetrachloride and diethyl ether. Aerobiologia, 31, 57–62.

    Article  Google Scholar 

  • Tormo-Molina, R., Maya-Manzano, J. M., Fernandez Rodriguez, S., Gonzalo Garijo, Á., & Silva Palacios, I. (2013). Influence of environmental factors on measurements with Hirst spore traps. Grana, 52(1), 59–70.

    Article  Google Scholar 

  • Tormo-Molina, R., Rodríguez, A. M., & Palacios, I. (1996). Sampling in aerobiology. Differences between traverses along the length of the slide in Hirst sporetraps. Aerobiologia, 12, 161–166.

    Article  Google Scholar 

  • VDI 4252–4. (2016). Bioaerosole und biologische Agenzien—Ermittlung von Pollen und Sporen in der Außenluft unter Verwendung einer volumetrischen Methode für ein Messnetz zu allergologischen Zwecken. VDI-Richtlinie 4252 Blatt 4, Entwurf. VDI/DIN-Handbuch Reinhaltung der Luft, Band 1a: Beuth, Berlin.

  • Velasco-Jiménez, M., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Córdoba (south-western Spain). Aerobiologia, 29, 113–120.

    Article  Google Scholar 

  • Zhang, Y., Bielory, L., Mi, Z., Cai, T., Robock, A., & Georgopoulos, P. (2015). Allergenic pollen season variations in the past two decades under changing climate in the United States. Global Change Biology, 21, 1581–1589.

    Article  CAS  Google Scholar 

  • Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., et al. (2012). Changes to airborne pollen counts across Europe. PLoS ONE, 7, e34076.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all organisations, their representatives and members for any support and helpful comments, specially the national and European working groups on standardisation in the VDI/DIN/KRdL 4252 and in CEN WG 39, the participants at the VDI/DIN/KRdL and CEN meetings in Berlin in 2015, Vienna, 2016, and at the ESA meeting in Lyon, 2016, when presenting and discussing the results, the Polleninformation Service of Germany PID, the European Society for Aerobiology and the International Aerobiology Association, namely S. Barral, U. Berger, K.C. Bergmann, M. Bonini, B. Clot, V. Dietze, C. Galan, R. Heesen, U. Kaminsky, M. Kmenta, C. Lhuillery, S. Monnier, S. Nehr, W. Straff, M. Thibaudon, M. Werchan. Further we thank W. Wosniok, Institute for Statistics, University of Bremen, for his assistance in the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Oteros.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oteros, J., Buters, J., Laven, G. et al. Errors in determining the flow rate of Hirst-type pollen traps. Aerobiologia 33, 201–210 (2017). https://doi.org/10.1007/s10453-016-9467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-016-9467-x

Keywords

Navigation