Skip to main content
Log in

A first evaluation of multiple automatic pollen monitors run in parallel

  • Special Issue: Autopollen
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

A range of commercially available automatic pollen monitors were run in parallel and evaluated for the first time during the 2019 spring season; this includes the Droplet Measurement Technologies WIBS-NEO, Helmut-Hund BAA-500, the Plair Rapid-E, two Swisens Poleno, and two Yamatronics KH-3000 devices. The instruments were run from 19 April to 31 May 2019 and located in Payerne, Switzerland, representative of a semi-rural site on the Swiss plateau. The devices were validated against Hirst-type traps in terms of total pollen counts for daily and sub-daily averages. While the manual measurements cannot be considered a “gold standard” in terms of absolute values, they provide an established reference against which the automatic instruments can be evaluated. Overall, there was considerable spread between instruments compared to the manual observations. The devices showed better performance when daily averages were considered, with three of the seven showing non-significantly different values from the manual measurements. However, when six-hourly averages were considered, only one of the instruments was not significantly different from the Hirst trap average. The largest differences between instruments were evident at low pollen concentrations (< 20 pollen grains/m3), no matter the temporal resolution considered. This is in part, however, to be expected since it is at such low concentrations that the Hirst measurements are most uncertain. It is also important to note that in 2019 many of the instruments tested had only recently been developed. Differences may also have arisen due to their varying abilities to identify specific pollen taxa or because the classification algorithms applied were developed for different pollen taxa and not total pollen, the variable considered in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamov, S., Clot, B., Crouzy, B., Gehrig, R., Graber, M.J., Lemonis, N., Sallin, C., and Tummon, F. (2021). Statistical understanding of measurement variability of Hirst-type volumetric pollen and spore samplers, Aerobiologia, submitted.

  • CEN/EN 16868:2019 (2019). Ambient air - Sampling and analysis of airborne pollen grains and fungal spores for networks related to allergy networks – Volumetric Hirst method. European Standard, European Committee for Standardisation, Brussels, Belgium, 38p.

  • Chappuis, C. M., Tummon, F., Clot, B., Konzelmann, T., Calpini, B., & Crouzy, B. (2019). Automatic pollen monitoring: First insights from hourly data. Aerobiologia, 36, 159–170.

    Article  Google Scholar 

  • Crouzy, B., Stella, M., Konzelmann, T., Calpini, B., & Clot, B. (2016). All-optical automatic pollen identification: Towards an operational system. Atmospheric Environment, 140, 202–212.

    Article  CAS  Google Scholar 

  • Daly, S. M., O’Connor, D. J., Healy, D. A., Hellebust, S., Arndt, J., McGillicuddy, E. J., Feeney, P., Quirke, M., Wenger, J. C., & Sodeau, J. R. (2019). Investigation of coastal sea-fog formation using the WIBS (wideband integrated bioaerosol sensor) technique. Atmospheric Chemistry and Physics, 19, 5737–5751.

    Article  CAS  Google Scholar 

  • Dhlamini, Z., Spillane, C., Moss, J.P. Ruane, J., Urquia, N., and Sonnino, A. (2005) Status of research and application of crop biotechnologies in developing countries, Online FAO report: www.fao.org/3/y5800e/Y5800E00.htm. Accessed 3 September 2020.

  • Duflot, V., Tulet, P., Flores, O., Barthe, C., Colomb, A., Deguillaume, L., Vaitilingom, M., Perring, A., Huffman, A., Hernandez, M. T., & Sellegri, K. (2019). Preliminary results from the FARCE 2015 campaign: Multidisciplinary study of the forest–gas–aerosol–cloud system on the tropical island of La Réunion. Atmospheric Chemistry and Physics, 19, 10591–10618.

    Article  CAS  Google Scholar 

  • Feeney, P., Rodr’ıguez, S. F., Molina, R., McGillicuddy, E., Hellebust, S., Quirke, M., Daly, S., O’Connor, D., & Sodeau, J. (2018). A comparison of on-line and off-line bioaerosol measurements at a biowaste site. Waste Management, 76, 323–338.

    Article  CAS  Google Scholar 

  • Foot, V. E., Kaye, P. H., Stanley, W. R., Barrington, S. J., Gallagher, M., & Gabey, A. (2008). Low-cost real-time multiparameter bio-aerosol sensors. Proceedings SPIE - International Society of Optics and Engineering, 7116, 711601. https://doi.org/10.1117/12.800226

    Article  CAS  Google Scholar 

  • Frohlich-Nowoisky, J., Nespoli, C. R., Pickersgill, D. A., Galand, P. E., Muller-Germann, I., Nunes, T., Cardoso, J. G., Almeida, S. M., Pio, C., Andreae, M. O., et al. (2014). Diversity and seasonal dynamics of airborne archaea. Biogeosciences, 11, 6067–6079.

    Article  Google Scholar 

  • Forde, E., Gallagher, M., Foot, V., Sarda-Esteve, R., Crawford, I., Kaye, P., Stanley, W., & Topping, D. (2019). Characterisation and source identification of biofluorescent aerosol emissions over winter and summer periods in the United Kingdom. Atmospheric Chemistry and Physics, 19, 1665–1684.

    Article  CAS  Google Scholar 

  • Gabey, A. M., Gallagher, M. W., Whitehead, J., Dorsey, J. R., Kaye, P. H., & Stanley, W. R. (2010). Measurements and comparison of primary biological aerosol above and below a trop- ical forest canopy using a dual channel fluorescence spectrometer. Atmospheric Chemistry and Physics, 10, 4453–4466.

    Article  CAS  Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., Berger, U., Clot, B., Brandao, R., and EAS QC Working Group. (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.

    Article  Google Scholar 

  • Gilles, S., Blume, C., Wimmer, M., Damialis, A., Meulenbroek, L., G¨okkaya, M., Bergoug-nan, C., Eisenbart, S., Sundell, N., Lindh, M., Andersson, L.-M., Dahl, A., Chaker, A., Kolek, F., Wagner, S., Neumann, A. U., Akdis, C. A., Garssen, J., Westin, J., & Van’t Land B, Davies DE, and Traidl-Hoffmann C,. (2020). Pollen exposure weakens innate defense against respiratory viruses. Allergy, 75, 576–587.

    Article  CAS  Google Scholar 

  • Healy, D. A., O’Connor, D. J., Burke, A. M., & Sodeau, J. R. (2012). A laboratory assessment of the waveband integrated bioaerosol sensor (WIBS-4) using individual samples of pollen and fungal spore material. Atmospheric Environment, 60, 534–543.

    Article  CAS  Google Scholar 

  • Healy, D. A., Huffman, J. A., O’Connor, D. J., & P¨ohlker, C., P¨oschl, U., Sodeau, J.R. (2014). Ambient measurements of biological aerosol particles near Killarney, Ireland: A comparison between real-time fluorescence and microscopy techniques. Atmospheric Chemistry and Physics, 14, 8055–8069.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Huffman, J. A., Sinha, B., Garland, R. M., Snee-Pollmann, A., Gunthe, S. S., Artaxo, P., Martin, S. T., Andreae, M. O., & Pöschl, U. (2012). Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmospheric Chemistry and Physics, 12, 11997–12019.

    Article  CAS  Google Scholar 

  • Huffman, J. A., Perring, A. E., Savage, N. J., Clot, B., Crouzy, B., Tummon, F., Shoshanim, O., Damit, B., Schneider, J., Sivaprakasam, V., Zawadowicz, M. A., Crawford, I., Gallagher, M., Topping, D., Doughty, D., Hill, S. C., & Pan, Y. (2019). Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Science and Technology, 54, 465–495.

    Article  Google Scholar 

  • Isard, S. A., Barnes, C. W., Hambleton, S., Ariatti, A., Russo, J. M., Tenuta, A., Gay, D. A., & Szabo, L. J. (2011). Predicting soybean rust incursions into the North American continental interior using crop monitoring, spore trapping, and aerobiological modelling. Plant Disease, 95, 1346–1357.

    Article  CAS  Google Scholar 

  • Kaye, P.H., K. Aptowicz, R.K. Chang, V. Foot, and G. Videen. (2007). Angularly resolved elastic scattering from airborne particles. In Optics of biological particles, eds. A.Hoekstra, V. Maltsev, and G. Videen, 31–61. Dordrecht: Springer Netherlands.

  • Kawashima, S., Clot, B., Fujita, T., Takahashi, Y., & Nakamura, K. (2007). An algorithm and a device for counting airborne pollen automatically using laser optics. Atmospheric Environment, 41, 7987–7993.

    Article  CAS  Google Scholar 

  • Kawashima, S., Thibaudon, M., Matsuda, S., Fujita, T., Lemonis, N., Clot, B., & Oliver, G. (2017). Automated pollen monitoring system using laser optics for observing seasonal changes in the concentration of total airborne pollen. Aerobiologia, 33, 351–362.

    Article  Google Scholar 

  • Kiselev, D., Bonacina, L., & Wolf, J.-P. (2011). Individual bioaerosol particle discrimination by multi-photon excited fluorescence. Optical Express, 24, 24516–24521.

    Article  Google Scholar 

  • Kiselev, D., Bonacina, L., & andWolf, J.-P.,. (2013). A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Reviews of Scientific Instrumentation, 84, 033302.

    Article  Google Scholar 

  • Konietschke, F., Placzek, M., Schaarschmidt, F., & Hothorn, L. A. (2015). nparcomp: An R software package for nonparametric multiple comparisons and simultaneous confidence intervals. Journal of Statistical Software, 64, 1–17.

    Article  Google Scholar 

  • Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583–621.

    Article  Google Scholar 

  • Lieberherr, G., Auderset, K., Calpini, B., Clot, B., Gysel, M., Konzelmann, T., Manzano, J., Mihajlovic, A., Moallemi, A., O’Connor, D., Sikoparija, B., Sauvageat, E., Tummon, F., & Vasilatou, K. (2021). Assessment of real-time bioaerosol particle countres using reference chamber experiments. Atmospheric Measurement Techniques Discussions, 13, 1539–1550. https://doi.org/10.5194/amt-13-1539-2020

    Article  CAS  Google Scholar 

  • Mimic, G., & Sikoparija, B. (2021). Analysis of airborne pollen time series originating from Hirst-type volumetric samplers—comparison between mobile sampling head oriented toward wind direction and fixed sampling head with two-layered inlet. Aerobiologia. https://doi.org/10.1007/s10453-021-09695-7

    Article  Google Scholar 

  • O’Connor, D. J., Healy, D. A., & Sodeau, J. R. (2013). The on-line detection of biological particle emissions from selected agricultural materials using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) technique. Atmospheric Environment, 80, 415–425.

    Article  Google Scholar 

  • O’Connor, D. J., Lovera, P., Iacopino, D., O’Riordan, A., Healy, D. A., & Sodeau, J. R. (2014a). Using spectral analysis and fluorescence lifetimes to discriminate between grass and tree pollen for aerobiological applications. Analytical Methods, 6, 1633–1639.

    Article  Google Scholar 

  • O’Connor, D. J., Healy, D. A., Hellebust, S., Buters, J. T. M., & Sodeau, J. R. (2014b). Using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) technique for the on-line detection of pollen grains. Aerosol Science and Technology, 48, 341–349.

    Article  Google Scholar 

  • Oteros-Moreno, J., Pusch, G., Weichenmeier, I., Heimann, U., Moeler, R., Traidl-Hoffmann, C., et al. (2015). Automatic and on-line pollen monitoring. International Archives of Allergy and Clinical Immunology, 167, 158–166.

    Article  Google Scholar 

  • Oteros, J., Weber, A., Kutzora, S., Rojo, J., Heinze, S., Herr, C., Gebauer, R., Schmidt- Weber, C. B., & Buters, J. T. M. (2020). An operational robotic pollen monitoring network based on automatic image recognition. Environmental Research. https://doi.org/10.1016/j.envres.2020.110031

    Article  Google Scholar 

  • Perring, A. E., Schwarz, J. P., Baumgardner, D., Hernandez, M. T., Spracklen, D. V., Heald, C. L., Gao, R. S., Kok, G., McMeeking, G. R., McQuaid, J. B., & Fahey, D. W. (2015). Airborne observations of regional variation in fluorescent aerosol across the United States. Journal of Geophysical Research: Atmosphere, 120, 1153–1170.

    Article  Google Scholar 

  • Pöhlker, C., Huffman, J. A., Förster, J. D., & Pöschl, U. (2013). Autofluorescence of atmospheric bioaerosols: Spectral fingerprints and taxonomic trends of pollen. Atmospheric Measurement Techniques, 13, 3369–3392.

    Article  Google Scholar 

  • Pope, F. D. (2010). Pollen grains are efficient cloud condensation nuclei. Environmental Research Letters, 5, 044015.

    Article  CAS  Google Scholar 

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rönmark, E., Bjerg, A., Perzanowski, M., Platts-Mills, T., & Lundäack, B. (2009). Major increase in allergic sensitization in school children from 1996 to 2006 in Northern Sweden. Journal of Allergy and Clinical Immunology, 124, 1–19.

    Article  Google Scholar 

  • Santl-Temkiv, T., Sikoparija, B., Maki, T., Carotenuto, F., Amato, P., Yao, M., Morris, C. E., Schnell, R., Jaenicke, R., Pöhlker, C., DeMott, P. J., Hill, T. C. J., & Huffman, J. A. (2019). Bioaerosol field measurements: Challenges and perspectives in outdoor studies. Aerosol Science and Technology. https://doi.org/10.1080/02786826.2019.1676395

    Article  Google Scholar 

  • Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy, B., Konzelmann, T., Lieberherr, G., Tummon, F., & Vasilatou, K. (2020). Real-time pollen monitoring using digital holography. Atmospheric Measurement Techniques, 13, 1–12.

    Article  Google Scholar 

  • Sauliene, I., Sukiene, L., Daunys, G., Valiulis, G., Vaitkeviˇcius, L., Matavulj, P., Brdar, S., Panic, M., Sikoparija, B., Clot, B., Crouzy, B., & Sofiev, M. (2019). Automatic pollen recognition with the Rapid-E particle counter: The first-level procedure, experience and next steps. Atmospheric Measurement Techniques, 12, 3435–3452.

    Article  CAS  Google Scholar 

  • Sodeau, J.R., O’Connor, D.J. (2016). Bioaerosol Monitoring of the Atmosphere for Occupational and Environmental Purposes. In Comprehensive Analytical Chemistry (pp. 391–420). Elsevier Ltd.

  • Sofiev, M. (2019). On possibilities of assimilation of near-real-time pollen data by atmospheric composition models. Aerobiologia, 35, 523–531.

    Article  Google Scholar 

  • Tesendic, D., Krsticev, D. B., Matavulj, P., Brdar, S., Panic, M., Minic, V., & Sikoparija, B. (2020). RealForAll: Real-time system for automatic detection of airborne pollen. Enterprise Information Systems. https://doi.org/10.1080/17517575.2020.1793391

    Article  Google Scholar 

  • Wickham, H., Averick, M., Bryan, J., Chang, W., D’Agostino McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Lin Pedersen, T., Miller, E., Milton Bache, S., Müller, K., Ooms, J., Robinson, D., Paige Seidel, D., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software. https://doi.org/10.21105/joss.01686.

  • Zuberbier, T., Lötvall, J., Simoens, S., Subramanian, S. V., & Church, M. K. (2014). Economic burden of inadequate management of allergic diseases in the European Union: A GA2LEN review. Allergy, 69, 1275–1279.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is a contribution to the EUMETNET AutoPollen Programme, which is developing a prototype automatic pollen monitoring network in Europe covering all aspects of the information chain from measurements through to communicating information to the public. Hund-Wetzlar and Swisens are warmly acknowledged for the kind provision of data from the BAA-500 and two Poleno prototypes, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Tummon.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 995 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tummon, F., Adamov, S., Clot, B. et al. A first evaluation of multiple automatic pollen monitors run in parallel. Aerobiologia 40, 93–108 (2024). https://doi.org/10.1007/s10453-021-09729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-021-09729-0

Keywords

Navigation