Skip to main content
Log in

New ANCF solid-beam element: relationship with Bézier volume and application on leaf spring modeling

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

An eight-node solid-beam element based on absolute nodal coordinate formulation (ANCF) which uses cubic interpolation at the longitudinal direction and linear at the transverse direction is proposed. The element can accurately discretize the geometry represented by the Bézier volume with the same basis function order. The continuity property of the proposed beam element is verified. Advantages of the proposed element can be found in the application of leaf spring modeling. The parabolically varying thickness of the leaf can be accurately described. Components in leaf spring such as the spring eye and the rubber bushing can be assembled efficiently since the proposed element can be connected at any direction. The ANCF reference node is used to represent the rigid components and the revolute joints in the vehicle suspension system. Static I-shaped cross-section cantilever beam and flexible pendulum model are used to test the accuracy and dynamic performance of the proposed solid-beam element. The leaf spring model shows the flexibility of the element in modeling the complex mechanical system and the balance between the accuracy and the efficiency.

Graphic abstract

An eight-node ANCF solid-beam element is proposed. The element can accurately discretize the geometry represented by the Bézier volume with the same basis function order. The parabolically varying thickness of the leaf can be accurately described. Components in leaf spring such as the spring eye and the rubber bushing can be assembled efficiently since the proposed element can be connected at any direction. Numerical results show that the proposed element can reach good balance between the accuracy and the efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005). https://doi.org/10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  2. Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61, 193–206 (2009). https://doi.org/10.1007/s11071-009-9641-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Piegl, L., Tiller, W.: The NURBS book. Springer, New York (1997)

    Book  Google Scholar 

  4. Sanborn, G.G., Shabana, A.A.: A rational finite element method based on the absolute nodal coordinate formulation. Nonlinear Dyn. 58, 565–572 (2009). https://doi.org/10.1007/s11071-009-9501-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Lan, P., Shabana, A.A.: Rational finite elements and flexible body dynamics. J. Vib. Acoust. 10(1115/1), 4000970 (2010)

    Google Scholar 

  6. Yamashita, H., Sugiyama, H.: Numerical convergence of finite element solutions of nonrational B-spline element and absolute nodal coordinate formulation. Nonlinear Dyn. 67, 177–189 (2011). https://doi.org/10.1007/s11071-011-9970-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhao, Y., Ma, C., Wei, C., et al.: Modeling and verification of a RANCF fluid element based on cubic rational bezier volume. J. Comput. Nonlinear Dyn. (2020). https://doi.org/10.1115/1.4046206

    Article  Google Scholar 

  8. Ma, C., Wei, C., Sun, J., et al.: Modeling method and application of rational finite element based on absolute nodal coordinate formulation. Acta Mech. Solida Sin. 31, 207–228 (2018). https://doi.org/10.1007/s10338-018-0020-z

    Article  Google Scholar 

  9. Shabana, A.A., Hamed, A.M., Mohamed, A.N.A., et al.: Use of B-spline in the finite element analysis: comparison with ANCF geometry. J. Comput. Nonlinear Dyn. (2012). https://doi.org/10.1115/1.4004377

    Article  Google Scholar 

  10. Lan, P., Yu, Z., Du, L., et al.: Integration of non-uniform Rational B-splines geometry and rational absolute nodal coordinates formulation finite element analysis. Acta Mech. Solida Sin. 27, 486–495 (2014). https://doi.org/10.1016/s0894-9166(14)60057-4

    Article  Google Scholar 

  11. Yu, Z., Lan, P., Lu, N.: A piecewise beam element based on absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1–15 (2014). https://doi.org/10.1007/s11071-014-1248-x

    Article  MATH  Google Scholar 

  12. Nada, A.A.: Use of B-spline surface to model large-deformation continuum plates: procedure and applications. Nonlinear Dyn. 72, 243–263 (2013). https://doi.org/10.1007/s11071-012-0709-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Mikkola, A., Shabana, A.A., Sanchez-Rebollo, C., et al.: Comparison between ANCF and B-spline surfaces. Multibody Syst. Dyn. 30, 119–138 (2013). https://doi.org/10.1007/s11044-013-9353-z

    Article  MathSciNet  Google Scholar 

  14. Yu, Z., Shabana, A.A.: Mixed-coordinate ANCF rectangular plate finite element. J. Comput. Nonlinear Dyn. (2015). https://doi.org/10.1115/1.4028085

    Article  Google Scholar 

  15. Frischkorn, J., Reese, S.: A solid-beam finite element and non-linear constitutive modelling. Comput. Methods Appl. Mech. Eng. 265, 195–212 (2013). https://doi.org/10.1016/j.cma.2013.06.009

    Article  MathSciNet  MATH  Google Scholar 

  16. Kerkkänen, K.S., Sopanen, J.T., Mikkola, A.M.: A linear beam finite element based on the absolute nodal coordinate formulation. J. Mech. Des. (2005). https://doi.org/10.1115/1.1897406

    Article  Google Scholar 

  17. Li, P., Gantoi, F.M., Shabana, A.A.: Higher order representation of the beam cross section deformation in large displacement finite element analysis. J. Sound Vib. 330, 6495–6508 (2011). https://doi.org/10.1016/j.jsv.2011.07.013

    Article  Google Scholar 

  18. Pan, K.Q., Liu, J.Y.: Geometric nonlinear dynamic analysis of curved beams using curved beam element. Acta Mech. Sin. 27, 1023–1033 (2011). https://doi.org/10.1007/s10409-011-0509-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280, 719–738 (2005). https://doi.org/10.1016/j.jsv.2003.12.044

    Article  Google Scholar 

  20. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. (2001). https://doi.org/10.1115/1.1410100

    Article  Google Scholar 

  21. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. (2001). https://doi.org/10.1115/1.1410099

    Article  Google Scholar 

  22. Sugiyama, H., Gerstmayr, J., Shabana, A.A.: Deformation modes in the finite element absolute nodal coordinate formulation. J. Sound Vib. 298, 1129–1149 (2006). https://doi.org/10.1016/j.jsv.2006.06.037

    Article  MathSciNet  MATH  Google Scholar 

  23. Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech. 229, 2923–2946 (2018). https://doi.org/10.1007/s00707-018-2131-5

    Article  MathSciNet  MATH  Google Scholar 

  24. Nachbagauer, K.: State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Arch. Comput. Methods Eng. 21, 293–319 (2014). https://doi.org/10.1007/s11831-014-9117-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. Inst. Mech. Eng. K 221, 219–231 (2007). https://doi.org/10.1243/1464419jmbd86

    Article  Google Scholar 

  26. Shen, Z., Li, P., Liu, C., et al.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1019–1033 (2014). https://doi.org/10.1007/s11071-014-1360-y

    Article  Google Scholar 

  27. Zhao, C.H., Bao, K.W., Tao, Y.L.: Transversally higher-order interpolating polynomials for the two-dimensional shear deformable ANCF beam elements based on common coefficients. Multibody Syst. Dyn. (2020). https://doi.org/10.1007/s11044-020-09768-4

    Article  MATH  Google Scholar 

  28. Xu, Q., Liu, J., Qu, L.: Dynamic modeling for silicone beams using higher-order ANCF beam elements and experiment investigation. Multibody Syst. Dyn. 46, 307–328 (2019). https://doi.org/10.1007/s11044-019-09668-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Nachbagauer, K., Pechstein, A.S., Irschik, H., et al.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26, 245–263 (2011). https://doi.org/10.1007/s11044-011-9249-8

    Article  MATH  Google Scholar 

  30. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. (2012). https://doi.org/10.1115/1.4006787

    Article  Google Scholar 

  31. Nachbagauer, K., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to buckling and nonlinear dynamic examples. J. Comput. Nonlinear Dyn. (2013). https://doi.org/10.1115/1.4025282

    Article  Google Scholar 

  32. García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007). https://doi.org/10.1007/s11071-006-9155-4

    Article  MATH  Google Scholar 

  33. Xu, Q., Liu, J.: An improved dynamic model for a silicone material beam with large deformation. Acta Mech. Sin. 34, 744–753 (2018). https://doi.org/10.1007/s10409-018-0759-y

    Article  MathSciNet  MATH  Google Scholar 

  34. Lan, P., Tian, Q., Yu, Z.: A new absolute nodal coordinate formulation beam element with multilayer circular cross section. Acta Mech. Sin. 36, 82–96 (2019). https://doi.org/10.1007/s10409-019-00897-4

    Article  MathSciNet  Google Scholar 

  35. Orzechowski, G., Shabana, A.A.: Analysis of warping deformation modes using higher order ANCF beam element. J. Sound Vib. 363, 428–445 (2016). https://doi.org/10.1016/j.jsv.2015.10.013

    Article  Google Scholar 

  36. Zhang, Y., Wei, C., Zhao, Y., et al.: Adaptive ANCF method and its application in planar flexible cables. Acta Mech. Sin. 34, 199–213 (2017). https://doi.org/10.1007/s10409-017-0721-4

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Q.T., Tian, Q., Hu, H.Y.: Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation. Acta Mech. Sin. 32, 525–534 (2015). https://doi.org/10.1007/s10409-015-0533-3

    Article  MathSciNet  MATH  Google Scholar 

  38. Shabana, A.A., Xu, L.: Rotation-based finite elements: reference-configuration geometry and motion description. Acta Mech. Sin. 37, 105–126 (2021). https://doi.org/10.1007/s10409-020-01030-6

    Article  MathSciNet  Google Scholar 

  39. Zhang, J., Lu, J., Han, W., et al.: Program load spectrum compilation for accelerated life test of parabolic leaf spring. Int. J. Automot. Technol. 20, 337–347 (2019). https://doi.org/10.1007/s12239-019-0033-8

    Article  Google Scholar 

  40. Zhao, L., Zhang, Y., Yu, Y., et al.: Truck handling stability simulation and comparison of taper-leaf and multi-leaf spring suspensions with the same vertical stiffness. Appl. Sci. 10(4), 1293 (2020). https://doi.org/10.3390/app10041293

    Article  Google Scholar 

  41. Yu, Z., Liu, Y., Tinsley, B., et al.: Integration of geometry and analysis for vehicle system applications: continuum-based leaf spring and tire assembly. J. Comput. Nonlinear Dyn. (2015). https://doi.org/10.1115/1.4031151

    Article  Google Scholar 

  42. Omar, M.A., Shabana, A.A., Mikkola, A., et al.: Multibody system modeling of leaf springs. Modal Anal. 10, 1601–1638 (2016). https://doi.org/10.1177/1077546304042047

    Article  MATH  Google Scholar 

  43. Sugiyama, H., Shabana, A.A., Omar, M.A., et al.: Development of nonlinear elastic leaf spring model for multibody vehicle systems. Comput. Methods Appl. Mech. Eng. 195, 6925–6941 (2006). https://doi.org/10.1016/j.cma.2005.02.032

    Article  MATH  Google Scholar 

  44. Atig, A., Ben Sghaier, R., Seddik, R., et al.: A simple analytical bending stress model of parabolic leaf spring. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 232, 1838–1850 (2018). https://doi.org/10.1177/0954406217709302

    Article  Google Scholar 

  45. Atig, A., Ben Sghaier, R., Seddik, R., et al.: Reliability-based high cycle fatigue design approach of parabolic leaf spring. Proc. Inst. Mech. Eng. L 233, 588–602 (2019). https://doi.org/10.1177/1464420716680499

    Article  Google Scholar 

  46. Kumar, P., Matawale, C.R.: Analysis and optimization of mono parabolic leaf spring material using ANSYS. Mater. Today 33, 5757–5764 (2020). https://doi.org/10.1016/j.matpr.2020.06.605

    Article  Google Scholar 

  47. Wang, T., Tinsley, B., Patel, M.D., et al.: Nonlinear dynamic analysis of parabolic leaf springs using ANCF geometry and data acquisition. Nonlinear Dyn. 93, 2487–2515 (2018). https://doi.org/10.1007/s11071-018-4338-3

    Article  Google Scholar 

  48. Shabana, A.A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16, 293–306 (1998). https://doi.org/10.1023/a:1008072517368

    Article  MathSciNet  MATH  Google Scholar 

  49. García-Vallejo, D., Mayo, J., Escalona, J.L., et al.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35, 313–329 (2004). https://doi.org/10.1023/b:Nody.0000027747.41604.20

    Article  MATH  Google Scholar 

  50. Shabana, A.A.: ANCF reference node for multibody system analysis. Proc. Inst. Mech. Eng. K 229, 109–112 (2014). https://doi.org/10.1177/1464419314546342

    Article  Google Scholar 

  51. Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. (2015). https://doi.org/10.1115/1.4028479

    Article  Google Scholar 

  52. Pappalardo, C.M., Yu, Z., Zhang, X., et al.: Rational ANCF thin plate finite element. J. Comput. Nonlinear Dyn. (2016). https://doi.org/10.1115/1.4032385

    Article  Google Scholar 

  53. Lan, P., Cui, Y., Yu, Z.: A novel absolute nodal coordinate formulation thin plate tire model with fractional derivative viscosity and surface integral-based contact algorithm. Proc. Inst. Mech. Eng. K 233, 583–597 (2018). https://doi.org/10.1177/1464419318816527

    Article  Google Scholar 

  54. Tian, Q., Lou, J., Mikkola, A.: A new elastohydrodynamic lubricated spherical joint model for rigid-flexible multibody dynamics. Mech. Mach. Theory 107, 210–228 (2017). https://doi.org/10.1016/j.mechmachtheory.2016.09.006

    Article  Google Scholar 

  55. Wang, Q., Tian, Q., Hu, H.: Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dyn. 83, 1919–1937 (2015). https://doi.org/10.1007/s11071-015-2456-8

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 11802072) and Key Project of Science and Technology of Hu’nan Province (Grant No. 2018GK1040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuqing Yu.

Additional information

Executive Editor: Qiang Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Cui, Y. New ANCF solid-beam element: relationship with Bézier volume and application on leaf spring modeling. Acta Mech. Sin. 37, 1318–1330 (2021). https://doi.org/10.1007/s10409-021-01089-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01089-9

Keywords

Navigation