Skip to main content
Log in

Modeling Method and Application of Rational Finite Element Based on Absolute Nodal Coordinate Formulation

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In multibody system dynamics, the absolute nodal coordinate formulation (ANCF) uses power functions as interpolating polynomials to describe the displacement field. It can get accurate results for flexible bodies that undergo large deformation and large rotation. However, the power functions are irrational representation which cannot describe the complex shapes precisely, especially for circular and conic sections. Different from the ANCF representation, the rational absolute nodal coordinate formulation (RANCF) utilizes rational basis functions to describe geometric shapes, which allows the accurate representation of complicated displacement and deformation in dynamics modeling. In this paper, the relationships between the rational surface and volume and the RANCF finite element are provided, and the generalized transformation matrices are established correspondingly. Using these transformation matrices, a new four-node three-dimensional RANCF plate element and a new eight-node three-dimensional RANCF solid element are proposed based on the RANCF. Numerical examples are given to demonstrate the applicability of the proposed elements. It is shown that the proposed elements can depict the geometric characteristics and structure configurations precisely, and lead to better convergence in comparison with the ANCF finite elements for the dynamic analysis of flexible bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Shabana AA. Flexible multibody dynamics: review of past and recent developments. Multibody Syst Dyn. 1997;1(2):189–222.

    Article  MathSciNet  MATH  Google Scholar 

  2. Shabana AA. Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst Dyn. 1997;1(3):339–48.

    Article  MathSciNet  MATH  Google Scholar 

  3. Sanborn GG, Shabana AA. A rational finite element method based on the absolute nodal coordinate formulation. Nonlinear Dyn. 2009;58(3):565–72.

    Article  MathSciNet  MATH  Google Scholar 

  4. Sanborn GG, Shabana AA. On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody Syst Dyn. 2009;22(2):181–97.

    Article  MATH  Google Scholar 

  5. Lan P, Shabana AA. Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 2010;61(1):193–206.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lan P, Shabana AA. Rational finite elements and flexible body dynamics. J Vib Acoust. 2010;132(4):0410071–9.

    Article  Google Scholar 

  7. Yamashita H, Sugiyama H. Numerical convergence of finite element solutions of nonrational B-spline element and absolute nodal coordinate formulation. Nonlinear Dyn. 2012;67(1):177–89.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mikkola AM, Shabana AA, Sanchez-Rebollo C, et al. Comparison between ANCF and B-spline surfaces. Multibody Syst Dyn. 2013;30(2):119–38.

    Article  MathSciNet  Google Scholar 

  9. Nada AA. Use of B-spline surface to model large-deformation continuum plates: procedure and applications. Nonlinear Dyn. 2013;72(1):243–63.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang HJ, Liu C, Tian Q, Hu HY, et al. Three new triangular shell elements of ANCF represented by Bézier triangles. Multibody Syst Dyn. 2015;35(4):321–51.

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu ZO, Shabana AA. A mixed-coordinate ANCF rectangular plate finite element. J Comput Nonlinear Dyn. 2015;10(6):061003.

    Article  Google Scholar 

  12. Pappalardo CM, Yu ZO, Zhang XS, et al. Rational ANCF thin plate finite element. J Comput Nonlinear Dyn. 2016;11(5):051009.

    Article  Google Scholar 

  13. Shabana AA. Dynamics of multibody systems. 3rd ed. Cambridge/New York: Cambridge University Press; 2005. p. 267–304.

    Book  MATH  Google Scholar 

  14. Shabana AA. Computational continuum mechanics. 2nd ed. Cambridge/New York: Cambridge University Press; 2012. p. 146–217.

    MATH  Google Scholar 

  15. Piegl L, Tiller W. The NURBS book. New York: Springer; 1997. p. 47–138.

    MATH  Google Scholar 

  16. Belytschko T, Liu WK, Moran B, et al. Nonlinear finite elements for continua and structures. 2nd ed. New York: Wiley; 2014. p. 346–53.

    Google Scholar 

  17. Mikkola AM, Shabana AA. A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst Dyn. 2003;9(3):283–309.

    Article  MathSciNet  MATH  Google Scholar 

  18. Dmitrochenko ON, Pogorelov DY. Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst Dyn. 2003;10(1):17–43.

    Article  MATH  Google Scholar 

  19. Dufva K, Shabana AA. Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc Inst Mech Eng Part K J Multibody Dyn. 2005;219(4):345–55.

    Google Scholar 

  20. Olshevskiy A, Dmitrochenko O, Kim CW. Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J Comput Nonlinear Dyn. 2014;9(2):021001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Wei, C., Sun, J. et al. Modeling Method and Application of Rational Finite Element Based on Absolute Nodal Coordinate Formulation. Acta Mech. Solida Sin. 31, 207–228 (2018). https://doi.org/10.1007/s10338-018-0020-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0020-z

Keywords

Navigation