Skip to main content
Log in

Rigid-flexible-soft coupling dynamic modeling and analysis of clustered tensegrity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Clustered tensegrity structures, which retain the advantages of the classical tensegrity structure, are better controllable, and provide more possibilities for a wide range of application scenarios. However, the dynamic modeling and analysis of clustered tensegrity structures with the significant characteristic of rigid-flexible-soft coupling have great challenges: (1) Rigid components (rods) and flexible components (classical cables) lead to a dynamic model that has the characteristic of rigid-flexible coupling, which severely limits the efficiency of dynamic simulation; (2) The "soft" characteristic of sliding cable slacking, which makes sliding cables frequently switch between tense and slack states in the actuation process, results in non-smooth dynamic behavior. In this paper, a model smoothing method based on the positional finite element method is proposed for dynamic analysis of clustered tensegrity structures with the rigid-flexible coupling characteristic, which can effectively and controllably filter the elastic high-frequency oscillations in the system without losing the accuracy of structural macroscopic deformation and greatly improve the computational efficiency than the model without smoothing. Then, for the non-smooth dynamics caused by soft characteristic, a nonlinear complementary method for sliding cable slacking is proposed, which makes the numerical simulation of sliding cable slacking and tensioning more stable than the traditional method. Finally, the model smoothing method for rigid-flexible coupling is integrated with the nonlinear complementary method for soft sliding cables, and a rigid-flexible-soft coupling framework that combines the implicit discrete scheme is formed for dynamic modeling and analysis of clustered tensegrity structures. The numerical simulation results show that the rigid-flexible-soft coupling framework can realize efficient, stable, and accurate dynamic analysis of clustered tensegrity structures and provide support for the design of clustered tensegrity structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The data generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rhode-Barbarigos, L., Ali, N.B.H., Motro, R., Smith, I.F.: Designing tensegrity modules for pedestrian bridges. Eng. Struct. 32(4), 1158–1167 (2010)

    Article  Google Scholar 

  2. Veuve, N., Safaei, S.D., Smith, I.F.: Active control for mid-span connection of a deployable tensegrity footbridge. Eng. Struct. 112, 245–255 (2016)

    Article  Google Scholar 

  3. Li, W., Nabae, H., Endo, G., Suzumori, K.: New soft robot hand configuration with combined biotensegrity and thin artificial muscle. IEEE Robot. Autom. Lett. 5(3), 4345–4351 (2020)

    Article  Google Scholar 

  4. Zhang, M., Geng, X., Bruce, J., Caluwaerts, K., Vespignani, M., SunSpiral, V., Abbeel, P., Levine, S.: Deep reinforcement learning for tensegrity robot locomotion. In: 2017 IEEE international conference on robotics and automation, pp. 634–641. Singapore (2017)

  5. Lee, H., Jang, Y., Choe, J.K., Lee, S., Song, H., Lee, J.P., Lone, N., Kim, J.: 3D-printed programmable tensegrity for soft robotics. Sci. Robot. 5, eaay9024 (2020)

    Article  Google Scholar 

  6. Sultan, C.: Tensegrity: 60 years of art, science, and engineering. Adv. Appl. Mech. 43, 69–145 (2009)

    Article  Google Scholar 

  7. Bauer, J., Kraus, J.A., Crook, C., Rimoli, J.J., Valdevit, L.: Tensegrity metamaterials: toward failure-resistant engineering systems through delocalized deformation. Adv. Mater. 33(10), 2005647 (2021)

    Article  Google Scholar 

  8. Liedl, T., Högberg, B., Tytell, J., Ingber, D.E., Shih, W.M.: Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat. Nanotechnol. 5(7), 520–524 (2010)

    Article  Google Scholar 

  9. Lu, B., Vecchioni, S., Ohayon, Y.P., Sha, R., Woloszyn, K., Yang, B., Mao, C., Seema, N.C.: 3D hexagonal arrangement of DNA tensegrity triangles. ACS Nano 15, 16788–16793 (2021)

    Article  Google Scholar 

  10. Ali, N.B.H., Rhode-Barbarigos, L., Smith, I.F.: Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm. Int. J. Solids Struct. 48(5), 637–647 (2011)

    Article  Google Scholar 

  11. Moored, K.W., Bart-Smith, H.: Investigation of clustered actuation in tensegrity structures. Int. J. Solids Struct. 46(17), 3272–3281 (2009)

    Article  Google Scholar 

  12. Ma, S., Chen, M., Skelton, R.E.: Tensegrity system dynamics based on finite element method. Compos. Struct. 280, 114838 (2022)

    Article  Google Scholar 

  13. Kan, Z., Peng, H., Chen, B., Zhong, W.: Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation FEM. Compos. Struct. 187, 241–258 (2018)

    Article  Google Scholar 

  14. Zhang, L., Gao, Q., Liu, Y., Zhang, H.: An efficient finite element formulation for nonlinear analysis of clustered tensegrity. Eng. Comput. 33(1), 252–273 (2016)

    Article  Google Scholar 

  15. Chen, M., Bai, X., Skelton, R.E.: Minimal mass design of clustered tensegrity structures. Comput. Methods Appl. Mech. Eng. 404, 115832 (2023)

    Article  MathSciNet  Google Scholar 

  16. Ma, S., Chen, M., Skelton, R.E.: Dynamics and control of clustered tensegrity systems. Eng. Struct. 264, 114391 (2022)

    Article  Google Scholar 

  17. Goyal, R., Skelton, R.E.: Tensegrity system dynamics with rigid bars and massive strings. Multibody Syst. Dyn. 469(3), 203–228 (2019)

    Article  MathSciNet  Google Scholar 

  18. Cefalo, M., Mirats-Tur, J.M.: A comprehensive dynamic model for class-1 tensegrity systems based on quaternions. Int. J. Solids Struct. 48(5), 785–802 (2011)

    Article  Google Scholar 

  19. Faroughi, S., Khodaparast, H.H., Friswell, M.I.: Non-linear dynamic analysis of tensegrity structures using a co-rotational method. Int. J. Nonlinear Mech. 69, 55–65 (2015)

    Article  Google Scholar 

  20. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)

    Google Scholar 

  21. Chang, S.: A novel series of solution methods for solving nonlinear stiff dynamic problems. Nonlinear Dyn. 107(3), 2539–2562 (2022)

    Article  Google Scholar 

  22. Vermeire, B.C.: Paired explicit Runge-Kutta schemes for stiff systems of equations. J. Comput. Phys. 393, 465–483 (2019)

    Article  MathSciNet  Google Scholar 

  23. Chen, Y., Li, Y., Huang, Y., Li, M., Liu, Y.: An efficient algorithm based on Broyden’s and generalized-α method for large scale flexible multi-body systems. Appl. Math. Model. 106, 742–755 (2022)

    Article  MathSciNet  Google Scholar 

  24. Kennedy, C.A., Carpenter, M.H.: Diagonally implicit Runge-Kutta methods for stiff ODEs. Appl. Numer. Math. 146, 221–244 (2019)

    Article  MathSciNet  Google Scholar 

  25. Deng, L., Zhang, Y.: A consistent corotational formulation for the nonlinear dynamic analysis of sliding beams. J. Sound Vib. 476, 115298 (2020)

    Article  Google Scholar 

  26. Guo, X., Zhang, D., Li, L., Zhang, L.: Application of the two-loop procedure in multibody dynamics with contact and constraint. J. Sound Vib. 427, 15–27 (2018)

    Article  Google Scholar 

  27. Song, N., Zhang, M., Li, F., Kan, Z., Zhao, J., Peng, H.: Dynamic research on winding and capturing of tensegrity flexible manipulator. Mech. Mach. Theory 193, 105554 (2024)

    Article  Google Scholar 

  28. Bathe, K., Noh, G.: Insight into an implicit time integration scheme for structural dynamics. Comput. Struct. 98, 1–6 (2012)

    Article  Google Scholar 

  29. Kim, W., Choi, S.Y.: An improved implicit time integration algorithm: the generalized composite time integration algorithm. Comput. Struct. 196, 341–354 (2018)

    Article  Google Scholar 

  30. Ji, Y., Xing, Y., Wiercigroch, M.: An unconditionally stable time integration method with controllable dissipation for second-order nonlinear dynamics. Nonlinear Dyn. 105(4), 3341–3358 (2021)

    Article  Google Scholar 

  31. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  32. Zhang, X., Qi, Z., Wang, G., Guo, S.: Model smoothing method of contact-impact dynamics in flexible multibody systems. Mech. Mach. Theory 138, 124–148 (2019)

    Article  Google Scholar 

  33. Zhang, Z., Mao, H., Hou, J., Wang, L., Wang, G.: Development and implementation of model smoothing method in the framework of absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 235(3), 312–325 (2021)

    Google Scholar 

  34. Zheng, X., Zhu, X., Chen, Z., Wang, X., Liang, B., Liao, Q.: An efficient dynamic modeling and simulation method of a cable-constrained synchronous rotating mechanism for continuum space manipulator. Aerosp. Sci. Technol. 119, 107156 (2021)

    Article  Google Scholar 

  35. Zheng, X., Yang, T., Chen, Z., Wang, X., Liang, B., Liao, Q.: ALE formulation for dynamic modeling and simulation of cable-driven mechanisms considering stick-slip frictions. Mech. Syst. Signal Process. 168, 108633 (2022)

    Article  Google Scholar 

  36. Zhang, L., Gao, Q., Zhang, H.W.: An efficient algorithm for mechanical analysis of bimodular truss and tensegrity structures. Int. J. Mech. Sci. 70, 57–68 (2013)

    Article  Google Scholar 

  37. Kan, Z., Li, F., Song, N., Peng, H.: Novel nonlinear complementarity function approach for mechanical analysis of tensegrity structures. AIAA J. 59(4), 1483–1495 (2021)

    Article  Google Scholar 

  38. Caluwaerts, K., Despraz, J., Işçen, A., et al.: Design and control of compliant tensegrity robots through simulation and hardware validation. J. R. Soc. Interface. 11(98), 20140520 (2014)

    Article  Google Scholar 

  39. Chen, L., Kim, K., Tang, E., Li, K., House, R., Zhu, E.L., Fountain, K., Agogino, A.M., Agogino, A., Sunspiral, V., Jung, E.: Soft spherical tensegrity robot design using rod-centered actuation and control. J. Mech. Robot. 9(2), 025001 (2017)

    Article  Google Scholar 

  40. Zhang, J., Hu, Y., Li, Y., Ma, Y., Wei, Y., Yang, J., Wu, Z., Rajabi, H., Peng, H., Wu, Y.: Versatile Like a Seahorse Tail: a bio-Inspired programmable continuum robot for conformal grasping. Adv. Intell. Syst. 4(11), 2200263 (2022)

    Article  Google Scholar 

  41. Zhang, J., Li, Y., Kan, Z., Yuan, Q., Rajabi, H., Wu, Z., Peng, H., Wu, J.: A preprogrammable continuum robot inspired by elephant trunk for dexterous manipulation. Soft Robot. 10(3), 636–646 (2023)

    Article  Google Scholar 

  42. Banerjee, A.: Flexible Multibody Dynamics: Efficient Formulations with Applications. CRC Press, Boca Raton (2022)

    Book  Google Scholar 

  43. Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  44. Fischer, A.: A special Newton-type optimization method. Optimization 24(3), 269–284 (1992)

    Article  MathSciNet  Google Scholar 

  45. Biboulet, N., Lubrecht, A.A.: Efficient solver implementation for Reynolds equation with mass-conserving cavitation. Tribol. Int. 118, 295–300 (2018)

    Article  Google Scholar 

  46. Zhang, X., Qi, Z., Wang, G., Guo, S., Qu, F.: Numerical investigation of the seismic response of a polar crane based on linear complementarity formulation. Eng. Struct. 211, 110462 (2020)

    Article  Google Scholar 

  47. Gao, S., Chen, Y., Huang, S., Xia, Y.: Efficient power flow algorithm for AC/MTDC considering complementary constraints of VSC’s reactive power and AC node voltage. IEEE Trans. Power Syst. 36(3), 2481–2490 (2020)

    Article  Google Scholar 

  48. Liu, Z., Cai, Z., Peng, H., Zhang, X., Wu, Z.: Morphology and tension perception of cable-driven continuum robots. IEEE ASME. Trans. Mech. 28(1), 314–325 (2023)

    Article  Google Scholar 

  49. Newmark, N.M.: A method of computation for structural dynamics. J .Eng. Mech. Div. 85(3), 67–94 (1959)

    Article  Google Scholar 

  50. Hilber, H.M., Hughes, T.J., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. D 5(3), 283–292 (1977)

    Article  Google Scholar 

  51. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  Google Scholar 

  52. Peng, H., Song, N., Li, F., Tang, S.: A mechanistic-based data-driven approach for general friction modeling in complex mechanical system. J. Appl. Mech. 89(7), 071005 (2022)

    Article  Google Scholar 

  53. Bottasso, C.L., Dopico, D., Trainelli, L.: On the optimal scaling of index three DAEs in multibody dynamics. Multibody Syst. Dyn. 19, 3–20 (2008)

    Article  MathSciNet  Google Scholar 

  54. Peng, H., Yang, H., Li, F., Yang, C., Song, N.: A unified framework for mechanical modeling and control of tensegrity robots. Mech. Mach. Theory 191, 105498 (2024)

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the National Natural Science Foundation of China (U2241263); the Fundamental Research Funds for the Central Universities (DUT22ZD211, DUT22QN223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Wang, M., Yang, H. et al. Rigid-flexible-soft coupling dynamic modeling and analysis of clustered tensegrity. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09475-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09475-1

Keywords

Navigation