Skip to main content
Log in

A new absolute nodal coordinate formulation beam element with multilayer circular cross section

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A systematic numerical integration method is applied to the absolute nodal coordinate formulation (ANCF) fully parameterized beam element with smooth varying and continuous cross section. Moreover, the formulation for the integration points and weight coefficients are given in the method which is used to model the multilayer beam with a circular cross section. To negate the effect of the bending stiffness for the element used to model the high-voltage electrical wire, the general continuum mechanical approach is adjusted. Additionally, the insulation cover for some particular types of the wire is described by the nearly incompressible Mooney–Rivlin material model. Finally, a static problem is presented to prove the accuracy and convergence properties of the element, and a dynamic problem of a flexible pendulum is simulated whereby the balance of the energy can be ensured. An experiment is carried out in which a wire is released as a pendulum and falls on a steel rod. The configurations of the wire are captured by a high-speed camera and compared with the simulation results. The feasibility of the wire model can therefore be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical Report, No. MBS96-1-UIC, University of Illinois at Chicago (1996)

  2. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal coordinate formulation. J. Sound Vib. 235, 539–565 (2000)

    Article  Google Scholar 

  3. Berzeri, M., Campanelli, M., Shabana, A.A.: Definition of the elastic forces in the finite element absolute nodal coordinate formulation and the floating frame of reference formulation. Multibody Syst. Dyn. 5, 21–54 (2001)

    Article  Google Scholar 

  4. Sugiyama, H., Mikkola, A., Shabana, A.A.: A non-incremental nonlinear finite element solution for cable problems. J. Mech. Des. 125, 746–756 (2003)

    Article  Google Scholar 

  5. Germayr, J., Shabana, A.A.: Analysis of Thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  Google Scholar 

  6. Liu, J.Y., Hong, J.Z.: Nonlinear formulation for flexible multibody system with large deformation. Acta Mech. Sin. 23, 111–119 (2007)

    Article  Google Scholar 

  7. Pappalardo, C.M., Patel, M.D., Tinsley, B., et al.: Contact force control in multibody pantograph/catenary systems. J. Multi-body Dyn. 230, 307–328 (2016)

    Google Scholar 

  8. Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. J. Vib. Acoust. 139, 011010 (2017)

    Article  Google Scholar 

  9. Wang, Q.T., Tian, Q., Hu, H.Y.: Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation. Acta Mech. Sin. 32, 525–534 (2016)

    Article  MathSciNet  Google Scholar 

  10. Hu, H.Y., Tian, Q., Liu, C.: Computational dynamics of soft machines. Acta Mech. Sin. 33, 516–528 (2017)

    Article  MathSciNet  Google Scholar 

  11. Zhao, J., Tian, Q., Hu, H.Y.: Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method. Acta Mech. Sin. 29, 132–142 (2013)

    Article  Google Scholar 

  12. Xu, Q.P., Liu, J.Y.: An improved dynamic model for a silicone material beam with large deformation. Acta Mech. Sin. 34, 744–753 (2018)

    Article  MathSciNet  Google Scholar 

  13. Zhang, Y., Wei, C., Zhao, Y., et al.: Adaptive ANCF method and its application in planar flexible cables. Acta Mech. Sin. 34, 199–213 (2018)

    Article  MathSciNet  Google Scholar 

  14. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243, 565–576 (2001)

    Article  Google Scholar 

  15. Kerkkanen, K.S., Sopanen, J.T., Mikkola, A.: A linear beam finite element based on the absolute nodal coordinate formulation. J. Mech. Des. 127, 621–630 (2005)

    Article  Google Scholar 

  16. Garcia-Vallejo, D., Mikkola, A., Esealona, J.L.: A new locking free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007)

    Article  Google Scholar 

  17. Mikkola, A., Dmitrochenkoo, N., Matikainen, M.K.: Inclusion of transverse shear deformation in a beam element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4, 1–9 (2009)

    Google Scholar 

  18. Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements theory. J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  19. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2001)

    Article  Google Scholar 

  20. Dufva, K., Sopanen, J.T., Mikkola, A.: Three-dimensional beam element based on cross-sectional coordinate system approach. Nonlinear Dyn. 43, 311–327 (2006)

    Article  Google Scholar 

  21. Germayr, J., Matikainen, M.K.: Analysis of stress and strain in the absolute nodal coordinate formulation. Mech. Based Des. Struct. Mach. 34, 409–430 (2006)

    Article  Google Scholar 

  22. Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. J. Multi-body Dyn. 221, 219–231 (2007)

    Google Scholar 

  23. Orzechowski, G., Shabana, A.A.: Analysis of warping deformation modes using higher order ANCF beam element. J. Sound Vib. 363, 428–445 (2016)

    Article  Google Scholar 

  24. Orzechowski, G.: Analysis of beam elements of circular cross section using the absolute nodal coordinate formulation. Archiv. Mech. Eng. 3, 283–296 (2012)

    Article  Google Scholar 

  25. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011)

    Article  Google Scholar 

  26. Patel, M., Orzechowski, G., Tian, Q., et al.: A new multibody system approach for tire modeling using ANCF finite elements. J. Multi-body Dyn. 230, 69–84 (2016)

    Google Scholar 

  27. Orzechowski, G., Janusz, F.: Volumetric locking suppression method for nearly incompressible nonlinear elastic multi-layer beams using ANCF elements. J. Theo. Appl. Mech. 55, 977–990 (2017)

    Article  Google Scholar 

  28. Ronald, C., Kim, K.J.: A survey of known and new cubature formulas for the unit disk. J. Appl. Math Comput. 7, 477–485 (2000)

    MathSciNet  Google Scholar 

  29. Rivlin, R.S.: Large elastic deformation of isotropic materials; I. Fundamental concepts, II. Some uniqueness theories for pure homogeneous deformations. Philos. Trans. R. Soc. Lond. Ser. A 240, 459–508 (1948)

    Article  Google Scholar 

  30. Mooney, R.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  Google Scholar 

  31. Shabana, A.A.: Computational Continuum Mechanics. 1st edn. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  32. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Element for Continua and Structures. Wiley, New York (2000)

    MATH  Google Scholar 

  33. Wohlmuth, B.I.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012 (2000)

    Article  MathSciNet  Google Scholar 

  34. Hesch, Ch., Betsch, P.: A mortar method for energy–momentum conserving schemes in frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 77, 1468–1500 (2009)

    Article  MathSciNet  Google Scholar 

  35. Temizer, I., Wriggers, P., Hughes, T.J.R.: Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput. Methods Appl. Mech. Eng. 209, 115–128 (2012)

    Article  MathSciNet  Google Scholar 

  36. Litewka, P.: Enhanced multiple-point beam-to-beam frictionless contact finite element. Comput. Mech. 52, 1365–1380 (2013)

    Article  MathSciNet  Google Scholar 

  37. Konyukhov, A., Schweizerhof, K.: Geometrically exact covariant approach for contact between curves. Comput. Methods Appl. Mech. Eng. 199, 2510–2531 (2010)

    Article  MathSciNet  Google Scholar 

  38. Wang, Q.T., Tian, Q., Hu, H.Y.: Dynamic simulation of frictional contacts of thin beams during large overall motions via absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1411–1425 (2014)

    Article  MathSciNet  Google Scholar 

  39. Dimitri, R., Zavarise, G.: Isogeometric treatment of frictional contact and mixed mode debonding problems. Comput. Mech. 60, 315–332 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 11802072) and the Fundamental Research Funds for the Central Universities (Grant HIT. NSRIF 2018032). The experiment was completed with the help of China Electric Power Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuqing Yu.

Appendix

Appendix

The global position vector is

$${\mathbf{r}} = {\mathbf{Se}}.$$

The position vector gradients are defined as

$$\left\{ \begin{aligned} \frac{{\partial {\mathbf{r}}}}{\partial x} = {\mathbf{r}}_{x} = \frac{{\partial {\mathbf{S}}(x,y,z) \cdot {\mathbf{e}}}}{\partial x} = {\mathbf{S}}_{x} \cdot {\mathbf{e}}, \hfill \\ \frac{{\partial {\mathbf{r}}}}{\partial y} = {\mathbf{r}}_{y} = \frac{{\partial {\mathbf{S}}(x,y,z) \cdot {\mathbf{e}}}}{\partial y} = {\mathbf{S}}_{y} \cdot {\mathbf{e}}, \hfill \\ \frac{{\partial {\mathbf{r}}}}{\partial z} = {\mathbf{r}}_{z} = \frac{{\partial {\mathbf{S}}(x,y,z) \cdot {\mathbf{e}}}}{\partial z} = {\mathbf{S}}_{z} \cdot {\mathbf{e}}. \, \hfill \\ \end{aligned} \right.$$

Cr is the right Cauchy–Green strain tensors

$${\mathbf{C}}_{r} = {\mathbf{J}}^{\text{T}} {\mathbf{J}},$$

where J is the matrix of position vector gradients, which is defined as

$${\mathbf{J}} = [{\mathbf{r}}_{x} ,{\mathbf{r}}_{y} ,{\mathbf{r}}_{z} ].$$

Because the right Cauchy–Green strain tensors are symmetric, one can identify six independent strain components that can be used to define the following strain vector

$${\mathbf{C}}_{rv} = [{\mathbf{C}}_{r} (1,1),{\mathbf{C}}_{r} (2,2),{\mathbf{C}}_{r} (3,3),{\mathbf{C}}_{r} (1,2),{\mathbf{C}}_{r} (1,3),{\mathbf{C}}_{r} (2,3)]^{\text{T}} .$$

The three invariants I1, I2 and I3 are defined as

$$\left\{ {\begin{array}{l} {I_{1} = \text{tr}\left( {{\mathbf{C}}_{r} } \right) \, } ,\\ {I_{2} = \frac{1}{2}\left\{ { \, \left[ {\text{tr}\left( {{\mathbf{C}}_{r} } \right)} \right]^{2} - \text{tr}\left( {{\mathbf{C}}_{r}^{2} } \right)} \right\}} \\ {I_{3} = \det \left( {{\mathbf{C}}_{r} } \right)\,{=}\left| {{\mathbf{C}}_{r} }\right|. \, } \\ \end{array} } \right.,$$

The three invariants \(I_{1}\), \(I_{2}\) and \(I_{3}\) can be written more explicitly as

$$\left\{ \begin{aligned} I_{1} =\, & {\text{tr}}\left( {{\mathbf{C}}_{r} } \right) \\ \, =\, & {\mathbf{C}}_{rv} (1) + {\mathbf{C}}_{rv} (2) + {\mathbf{C}}_{rv} (3), \\ I_{2} =\, & \frac{1}{2}\left\{ { \, \left[ {{\text{tr}}\left( {{\mathbf{C}}_{r} } \right)} \right]^{2} - {\text{tr}}\left( {{\mathbf{C}}_{r}^{2} } \right)} \right\} \\ {=}\, & {\mathbf{C}}_{rv} (1){\mathbf{C}}_{rv} (2) + {\mathbf{C}}_{rv} (1){\mathbf{C}}_{rv} (3) + {\mathbf{C}}_{rv} (2){\mathbf{C}}_{rv} (3) - {\mathbf{C}}_{rv}^{2} (4) - {\mathbf{C}}_{rv}^{2} (5) - {\mathbf{C}}_{rv}^{2} (6), \\ I_{3} =\, & \det \left( {{\mathbf{C}}_{r} } \right){ = }\left| {{\mathbf{C}}_{r} } \right| \\ {=}\, & {\mathbf{C}}_{rv} (1){\mathbf{C}}_{rv} (2){\mathbf{C}}_{rv} (3) + 2{\mathbf{C}}_{rv} (4){\mathbf{C}}_{rv} (5){\mathbf{C}}_{rv} (6) - {\mathbf{C}}_{rv} (1){\mathbf{C}}_{rv}^{2} (6) - {\mathbf{C}}_{rv} (2){\mathbf{C}}_{rv}^{2} (5) - {\mathbf{C}}_{rv} (3){\mathbf{C}}_{rv}^{2} (4), \\ \end{aligned} \right.$$
$$\begin{aligned} {\mathbf{C}}_{rv} (1) = {\mathbf{e}}^{\text{T}} {\mathbf{S}}_{x}^{\text{T}} {\mathbf{S}}_{x} {\mathbf{e}},{\mathbf{C}}_{rv} (2) = {\mathbf{e}}^{\text{T}} {\mathbf{S}}_{\text{y}}^{\text{T}} {\mathbf{S}}_{y} {\mathbf{e}},{\mathbf{C}}_{rv} (3) = {\mathbf{e}}^{\text{T}} {\mathbf{S}}_{z}^{\text{T}} {\mathbf{S}}_{z} {\mathbf{e}}, \hfill \\ {\mathbf{C}}_{rv} (4) = {\mathbf{e}}^{\text{T}} {\mathbf{S}}_{x}^{\text{T}} {\mathbf{S}}_{y} {\mathbf{e}},{\mathbf{C}}_{rv} (5) = {\mathbf{e}}^{\text{T}} {\mathbf{S}}_{x}^{\text{T}} {\mathbf{S}}_{z} {\mathbf{e}},{\mathbf{C}}_{rv} (6) = {\mathbf{e}}^{\text{T}} {\mathbf{S}}_{\text{y}}^{\text{T}} {\mathbf{S}}_{z} {\mathbf{e}}. \hfill \\ \end{aligned}$$

\({{\partial I_{1} } \mathord{\left/ {\vphantom {{\partial I_{1} } {\partial {\mathbf{e}}}}} \right. \kern-0pt} {\partial {\mathbf{e}}}}\), \({{\partial I_{2} } \mathord{\left/ {\vphantom {{\partial I_{2} } {\partial {\mathbf{e}}}}} \right. \kern-0pt} {\partial {\mathbf{e}}}}\) and \({{\partial I_{3} } \mathord{\left/ {\vphantom {{\partial I_{3} } {\partial {\mathbf{e}}}}} \right. \kern-0pt} {\partial {\mathbf{e}}}}\) can be written as

$$\frac{{\partial I_{1} }}{{\partial {\mathbf{e}}}} = \frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}} + \frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}} + \frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}},$$
$$\begin{aligned} \frac{{\partial I_{2} }}{{\partial {\mathbf{e}}}} = & \frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}{\mathbf{C}}_{rv} (2) + {\mathbf{C}}_{rv} (1)\frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}} +\, \frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}{\mathbf{C}}_{rv} (3) \\ & + {\mathbf{C}}_{rv} (1)\frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}} + \frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}{\mathbf{C}}_{rv} (3) + {\mathbf{C}}_{rv} (2)\frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}} \\ & -\, 2{\mathbf{C}}_{rv} (4)\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}} -\, 2{\mathbf{C}}_{rv} (5)\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}} - 2{\mathbf{C}}_{rv} (6)\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}, \\ \end{aligned}$$
$$\begin{aligned} \frac{{\partial I_{3} }}{{\partial {\mathbf{e}}}} = & \frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}{\mathbf{C}}_{rv} (2){\mathbf{C}}_{rv} (3) + {\mathbf{C}}_{rv} (1)\frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}{\mathbf{C}}_{rv} (3) + {\mathbf{C}}_{rv} (1){\mathbf{C}}_{rv} (2)\frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}} \, \\ \, & \quad +\, 2\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}{\mathbf{C}}_{rv} (5){\mathbf{C}}_{rv} (6) + 2{\mathbf{C}}_{rv} (4)\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}{\mathbf{C}}_{rv} (6) + 2{\mathbf{C}}_{rv} (4){\mathbf{C}}_{rv} (5)\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}} \\ \, & \quad -\, \frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}{\mathbf{C}}_{rv}^{2} (6) - 2{\mathbf{C}}_{rv} (1){\mathbf{C}}_{rv} (6)\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}} \\ \, & \quad -\, \frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}{\mathbf{C}}_{rv}^{2} (5) - 2{\mathbf{C}}_{rv} (2){\mathbf{C}}_{rv} (5)\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}} \\ \, & \quad -\, \frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}{\mathbf{C}}_{rv}^{2} (4) - 2{\mathbf{C}}_{rv} (3){\mathbf{C}}_{rv} (4)\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}. \\ \end{aligned}$$

\({{\partial^{2} I_{1} } \mathord{\left/ {\vphantom {{\partial^{2} I_{1} } {\partial {\mathbf{e}}^{2} }}} \right. \kern-0pt} {\partial {\mathbf{e}}^{2} }}\), \({{\partial^{2} I_{2} } \mathord{\left/ {\vphantom {{\partial^{2} I_{2} } {\partial {\mathbf{e}}^{2} }}} \right. \kern-0pt} {\partial {\mathbf{e}}^{2} }}\) and \({{\partial^{2} I_{3} } \mathord{\left/ {\vphantom {{\partial^{2} I_{3} } {\partial {\mathbf{e}}^{2} }}} \right. \kern-0pt} {\partial {\mathbf{e}}^{2} }}\) can be written as

$$\frac{{\partial^{2} I_{1} }}{{\partial {\mathbf{e}}^{2} }} = \frac{{\partial^{2} {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}^{2} }} + \frac{{\partial^{2} {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}^{2} }} + \frac{{\partial^{2} {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}^{2} }},$$
$$\begin{aligned} \frac{{\partial^{2} I_{2} }}{{\partial {\mathbf{e}}^{2} }} = & \frac{{\partial^{2} {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv} (2) + \frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} + {\mathbf{C}}_{rv} (1)\frac{{\partial^{2} {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}^{2} }} + \frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} \\ \, & \quad +\, \frac{{\partial^{2} {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv} (3) + \frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} + {\mathbf{C}}_{rv} (1)\frac{{\partial^{2} {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}^{2} }} + \frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} \\ \, & \quad +\, \frac{{\partial^{2} {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv} (3) + \frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} + {\mathbf{C}}_{rv} (2)\frac{{\partial^{2} {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}^{2} }} + \frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} \\ \, & \quad -\, 2\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} - 2\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} - 2\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} \\ \, & \quad -\, 2{\mathbf{C}}_{rv} (4)\frac{{\partial^{2} {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}^{2} }} - 2{\mathbf{C}}_{rv} (5)\frac{{\partial^{2} {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}^{2} }} - 2{\mathbf{C}}_{rv} (6)\frac{{\partial^{2} {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}^{2} }}, \\ \end{aligned}$$
$$\begin{aligned} \frac{{\partial^{2} I_{3} }}{{\partial {\mathbf{e}}^{2} }} = & \frac{{\partial^{2} {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv} (2){\mathbf{C}}_{rv} (3) + \frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (3) + \frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (2) \\ \, & \quad +\, \frac{{\partial^{2} {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv} (1){\mathbf{C}}_{rv} (3) + \frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (3) + \frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (1) \\ \, & \quad +\, \frac{{\partial^{2} {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv} (1){\mathbf{C}}_{rv} (2) + \frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (2) + \frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (1) \\ \, & \quad +\, 2\frac{{\partial^{2} {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv} (5){\mathbf{C}}_{rv} (6) + 2\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (6) + 2\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (5) \\ \, & \quad +\, 2\frac{{\partial^{2} {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv} (4){\mathbf{C}}_{rv} (6) + 2\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (6) + 2\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (4) \\ \, & \quad +\, 2\frac{{\partial^{2} {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv} (4){\mathbf{C}}_{rv} (5) + 2\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (5) + 2\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (4) \\ \, & \quad -\, \frac{{\partial^{2} {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv}^{2} (6) - 2\frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (6) - 2{\mathbf{C}}_{rv} (6)\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} \\ \, & \quad -\, 2\varvec{C}_{rv} (1)\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} -\, 2{\mathbf{C}}_{rv} (1){\mathbf{C}}_{rv} (6)\frac{{\partial^{2} {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}^{2} }} - \frac{{\partial^{2} {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv}^{2} (5) \\ \, & \quad -\, 2\frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (5) - 2{\mathbf{C}}_{rv} (5)\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} - 2{\mathbf{C}}_{rv} (2)\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} \\ \, & \quad -\, 2{\mathbf{C}}_{rv} (2){\mathbf{C}}_{rv} (5)\frac{{\partial^{2} {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}^{2} }} - \frac{{\partial^{2} {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}^{2} }}{\mathbf{C}}_{rv}^{2} (4) - 2\frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} {\mathbf{C}}_{rv} (4) \\ \, & \quad -\, 2{\mathbf{C}}_{rv} (4)\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} -\, 2{\mathbf{C}}_{rv} (3)\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}\left( {\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}}} \right)^{\text{T}} -\, 2{\mathbf{C}}_{rv} (3){\mathbf{C}}_{rv} (4)\frac{{\partial^{2} {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}^{2} }}. \\ \end{aligned}$$
$$\begin{array}{*{20}c} {\left\{ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}}} = 2{\mathbf{S}}_{x}^{\text{T}} {\mathbf{S}}_{x} {\mathbf{e}},} \\ {\frac{{\partial {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}}} = 2{\mathbf{S}}_{\text{y}}^{\text{T}} {\mathbf{S}}_{y} {\mathbf{e}},} \\ {\frac{{\partial {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}}} = 2{\mathbf{S}}_{z}^{\text{T}} {\mathbf{S}}_{z} {\mathbf{e}},} \\ {\frac{{\partial {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}}} = {\mathbf{S}}_{x}^{\text{T}} {\mathbf{S}}_{y} {\mathbf{e}} + {\mathbf{S}}_{y}^{\text{T}} S_{x} {\mathbf{e}},} \\ {\frac{{\partial {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}}} = {\mathbf{S}}_{x}^{\text{T}} {\mathbf{S}}_{z} {\mathbf{e}} + {\mathbf{S}}_{z}^{\text{T}} {\mathbf{S}}_{x} {\mathbf{e}},} \\ {\frac{{\partial {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}}} = {\mathbf{S}}_{y}^{\text{T}} {\mathbf{S}}_{z} {\mathbf{e}} + {\mathbf{S}}_{z}^{\text{T}} {\mathbf{S}}_{y} {\mathbf{e}}.} \\ \end{array} } \right.} & {\left\{ {\begin{array}{*{20}c} {\frac{{\partial^{2} {\mathbf{C}}_{rv} (1)}}{{\partial {\mathbf{e}}^{2} }} = 2{\mathbf{S}}_{x}^{\text{T}} {\mathbf{S}}_{x} ,} \\ {\frac{{\partial^{2} {\mathbf{C}}_{rv} (2)}}{{\partial {\mathbf{e}}^{2} }} = 2{\mathbf{S}}_{\text{y}}^{\text{T}} {\mathbf{S}}_{y} ,} \\ {\frac{{\partial^{2} {\mathbf{C}}_{rv} (3)}}{{\partial {\mathbf{e}}^{2} }} = 2{\mathbf{S}}_{z}^{\text{T}} {\mathbf{S}}_{z} ,} \\ {\frac{{\partial^{2} {\mathbf{C}}_{rv} (4)}}{{\partial {\mathbf{e}}^{2} }} = {\mathbf{S}}_{x}^{\text{T}} {\mathbf{S}}_{y} + {\mathbf{S}}_{y}^{\text{T}} {\mathbf{S}}_{x} ,} \\ {\frac{{\partial^{2} {\mathbf{C}}_{rv} (5)}}{{\partial {\mathbf{e}}^{2} }} = {\mathbf{S}}_{x}^{\text{T}} {\mathbf{S}}_{z} + {\mathbf{S}}_{z}^{\text{T}} {\mathbf{S}}_{x} ,} \\ {\frac{{\partial^{2} {\mathbf{C}}_{rv} (6)}}{{\partial {\mathbf{e}}^{2} }} = {\mathbf{S}}_{y}^{\text{T}} {\mathbf{S}}_{z} + {\mathbf{S}}_{z}^{\text{T}} {\mathbf{S}}_{y} .} \\ \end{array} } \right.} \\ \end{array}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, P., Tian, Q. & Yu, Z. A new absolute nodal coordinate formulation beam element with multilayer circular cross section. Acta Mech. Sin. 36, 82–96 (2020). https://doi.org/10.1007/s10409-019-00897-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00897-4

Keywords

Navigation