Skip to main content

Advertisement

Log in

Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Statistical landslide susceptibility mapping is a topic in complete and constant evolution, especially since the introduction of machine learning (ML) methods. A new methodological approach is here presented, based on the ensemble of artificial neural network, generalized boosting model and maximum entropy ML algorithms. Such approach has been tested in the Monterosso al Mare area, Cinque Terre National Park (Northern Italy), severely hit by landslides in October 2011, following an extraordinary precipitation event, which caused extensive damage at this World Heritage site. Thirteen predisposing factors were selected and assessed according to the main characteristics of the territory and through variance inflation factor, whilst a database made of 260 landslides was adopted. Four different Ensemble techniques were applied, after the averaging of 300 stand-alone methods, each one providing validation scores such as ROC (receiver operating characteristics)/AUC (area under curve) and true skill statistics (TSS). A further model performance evaluation was achieved by assessing the uncertainty through the computation of the coefficient of variation (CV). Ensemble modelling thus showed improved reliability, testified by the higher scores, by the low values of CV and finally by a general consistency between the four Ensemble models adopted. Therefore, the improved reliability of Ensemble modelling confirms the efficacy and suitability of the proposed approach for decision-makers in land management at local and regional scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • A.R.P.A.L.-C.F.M.I.-P.C. (Agenzia Regionale per la Protezione dell'Ambiente Ligure – Centro Funzionale Meteoidrologico di Protezione Civile della Regione Liguria) (2012) Uno tsunami venuto daimonti - Provincia della Spezia 25 ottobre 2011 rapporto di evento meteo-idrologico (In Italian). Quaderni ARPAL 1. Redazione Ed Genova

  • Abbate E (1969) Geologia delle Cinque Terre e dell’entroterra di Levanto (Liguria Orientale). Memorie della società geologica Italiana, vol 8. Arti Grafiche Pacini Mariotti, Pisa

    Google Scholar 

  • Abedini M, Ghasemian B, Shirzadi A, Shahabi H, Chapi K, Pham BT, Bin Ahmad B, Tien Bui D (2018) A novel hybrid approach of Bayesian logistic regression and its ensembles for landslide susceptibility assessment. Geocarto Int 34:1427–1457. https://doi.org/10.1080/10106049.2018.1499820

  • Agnoletti M, Errico A, Santoro A, Dani A, Preti F (2019) Terraced landscapes and hydrogeological risk. Effects of land abandonment in Cinque Terre (Italy) during severe rainfall events. Sustainability 11:235

    Article  Google Scholar 

  • Akgün A, Türk N (2011) Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region, NW Turkey. Comput Geosci 37:1515–1524. https://doi.org/10.1016/j.cageo.2010.09.006

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Althuwaynee OF, Pradhan B, Park H-J, Lee JH (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. CATENA 114:21–36. https://doi.org/10.1016/j.catena.2013.10.011

    Article  Google Scholar 

  • Araujo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Global Change Biology 11(9):1504–1513

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. https://doi.org/10.1016/j.tree.2006.09.010

    Article  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology / un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci Bull 24:43–69. https://doi.org/10.1080/02626667909491834

    Article  Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In International Landslide Symposium Proceedings Toronto Canada. vol 1, pp 17-22

  • Brandolini P (2017) The outstanding terraced landscape of the Cinque Terre coastal slopes (eastern Liguria). In: Landscapes and landforms of Italy. Springer, Cham, pp 235–244

    Chapter  Google Scholar 

  • Brandolini P, Cevasco A, Capolongo D, Pepe G, Lovergine F, Del Monte M (2018) Response of terraced slopes to a very intense rainfall event and relationships with land abandonment: a case study from Cinque Terre (Italy). Land Degrad Dev 29:630–642. https://doi.org/10.1002/ldr.2672

    Article  Google Scholar 

  • Bueechi E, Klimeš J, Frey H, Huggel C, Strozzi T, Cochachin A (2019) Regional-scale landslide susceptibility modelling in the cordillera Blanca, Peru—a comparison of different approaches. Landslides 16:395–407. https://doi.org/10.1007/s10346-018-1090-1

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New York. https://doi.org/10.1007/b97636

    Book  Google Scholar 

  • Camera C, Masetti M, Apuani T (2012) Rainfall, infiltration, and groundwater flow in a terraced slope of Valtellina (northern Italy): field data and modelling. Environ Earth Sci 65:1191–1202. https://doi.org/10.1007/s12665-011-1367-3

    Article  Google Scholar 

  • Camera CAS, Apuani T, Masetti M (2014) Mechanisms of failure on terraced slopes: the Valtellina case (northern Italy). Landslides 11:43–54. https://doi.org/10.1007/s10346-012-0371-3

    Article  Google Scholar 

  • Canuti P, Casagli N, Ermini L, Fanti R, Farina P (2004) Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing. Environ Geol 45:907–919. https://doi.org/10.1007/s00254-003-0952-5

    Article  Google Scholar 

  • Carmignani L, Decandia FA, Fantozzi PL, Lazzarotto A, Liotta D, Meccheri M (1994) Tertiary extensional tectonics in Tuscany (northern Apennines, Italy). Tectonophysics 238:295–315. https://doi.org/10.1016/0040-1951(94)90061-2

    Article  Google Scholar 

  • Carotenuto F, Angrisani AC, Bakthiari A, Carratù MT, Di Martire D, Finicelli GF, Raia P, Calcaterra D (2017) A new statistical approach for landslide susceptibility assessment in the urban area of Napoli (Italy). In: Workshop on World Landslide Forum. Springer, Cham, pp 881–889

    Google Scholar 

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831. https://doi.org/10.5194/nhess-13-2815-2013

    Article  Google Scholar 

  • Cantarino I, Carrion MA, Goerlich F, Ibañez VM (2019) A ROC analysis-based classification method for landslide susceptibility maps. Landslides 16(2):265–282

  • Cervi F, Berti M, Borgatti L, Ronchetti F, Manenti F, Corsini A (2010) Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides 7:433–444. https://doi.org/10.1007/s10346-010-0207-y

    Article  Google Scholar 

  • Cevasco A, Pepe G, Brandolini P (2012) Shallow landslides induced by heavy rainfall on terraced slopes: the case study of the October, 25, 2011 event in the Vernazza catchment (Cinque Terre, NW Italy). Rend Online Soc Geol Ital 21:384–386

    Google Scholar 

  • Cevasco A, Brandolini P, Scopesi C, Rellini I (2013) Relationships between geo-hydrological processes induced by heavy rainfall and land-use: the case of 25 October 2011 in the Vernazza catchment (Cinque Terre, NW Italy). J Maps 9(2):289–298

    Article  Google Scholar 

  • Cevasco A, Pepe G, Brandolini P (2014) The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bull Eng Geol Environ 73:859–875. https://doi.org/10.1007/s10064-013-0544-x

    Article  Google Scholar 

  • Cevasco A, Diodato N, Revellino P, Fiorillo F, Grelle G, Guadagno FM (2015) Storminess and geo-hydrological events affecting small coastal basins in a terraced Mediterranean environment. Sci Total Environ 532:208–219

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora MK (2010) Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 7:411–423. https://doi.org/10.1007/s10346-010-0202-3

    Article  Google Scholar 

  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J (2017a) A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151:147–160. https://doi.org/10.1016/j.catena.2016.11.032

    Article  Google Scholar 

  • Chen W, Shirzadi A, Shahabi H, Ahmad BB, Zhang S, Hong H, Zhang N (2017b) A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomat Nat Haz Risk 8:1955–1977. https://doi.org/10.1080/19475705.2017.1401560

  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu A-X, Pei X, Duan Z (2018) Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ 626:1121–1135. https://doi.org/10.1016/j.scitotenv.2018.01.124

    Article  Google Scholar 

  • Choi J, Oh H-J, Lee H-J, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23. https://doi.org/10.1016/j.enggeo.2011.09.011

    Article  Google Scholar 

  • Ciurleo M, Cascini L, Calvello M (2017) A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Eng Geol 223:71–81. https://doi.org/10.1016/j.enggeo.2017.04.023

    Article  Google Scholar 

  • Coetzee BWT, Robertson MP, Erasmus BFN, van Rensburg BJ, Thuiller W (2009) Ensemble models predict important bird areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob Ecol Biogeogr 18:701–710. https://doi.org/10.1111/j.1466-8238.2009.00485.x

    Article  Google Scholar 

  • Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63:397–406. https://doi.org/10.1007/s12665-010-0724-y

    Article  Google Scholar 

  • Convertino M, Troccoli A, Catani F (2013) Detecting fingerprints of landslide drivers: a MaxEnt model. J Geophys Res Earth Surf 118:1367–1386. https://doi.org/10.1002/jgrf.20099

    Article  Google Scholar 

  • Corominas J, Van Westen C, Frattini P, Cascini L, Malet JP, Fotopolou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263. https://doi.org/10.1007/s10064-013-0538-8

    Article  Google Scholar 

  • Cruden D M, Varnes D J (1996) Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report (247)

  • D’Amato Avanzi G, Galanti Y, Giannecchini R, Mazzali A, Saulle G (2013) Remarks on the 25 October 2011 rainstorm in eastern Liguria and northwestern Tuscany (Italy) and the related landslides. Rend Online Soc Geol Ital 24:76–78

    Google Scholar 

  • D’Onofrio R, Trusiani E (2018) Strategies and actions to recover the landscape after flooding: the case of Vernazza in the Cinque Terre National Park (Italy). Sustainability 10(3):742

    Article  Google Scholar 

  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Han Z, Pham BT (2019) Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 12:T05005:641–658. https://doi.org/10.1007/s10346-019-01286-5

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, McC M, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and distributions 17(1):43–57

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343. https://doi.org/10.1016/j.geomorph.2004.09.025

    Article  Google Scholar 

  • Felicísimo ÁM, Cuartero A, Remondo J, Quirós E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10:175–189. https://doi.org/10.1007/s10346-012-0320-1

    Article  Google Scholar 

  • Fisher RA (2006) Statistical methods for research workers. Genesis Publishing Pvt Ltd.

  • Formetta G, Capparelli G, Versace P (2016) Evaluating performance of simplified physically based models for shallow landslide susceptibility. Hydrol Earth Syst Sci 20:4585–4603. https://doi.org/10.5194/hess-20-4585-2016

    Article  Google Scholar 

  • Fressard M, Thiery Y, Maquaire O (2014) Which data for quantitative landslide susceptibility mapping at operational scale? Case study of the Pays d’Auge plateau hillslopes (Normandy, France). Nat Hazards Earth Syst Sci 14:569–588. https://doi.org/10.5194/nhess-14-569-2014

    Article  Google Scholar 

  • Froude MJ, Petley D (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181

    Article  Google Scholar 

  • Galve JP, Cevasco A, Brandolini P, Soldati M (2015) Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 12:101–114. https://doi.org/10.1007/s10346-014-0478-9

    Article  Google Scholar 

  • Gigli G, Morelli S, Fornera S, Casagli N (2014) Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides 11(1):1–14

    Article  Google Scholar 

  • Godt JW, Schulz WH, Baum RL, Savage WZ (2008) Modeling rainfall conditions for shallow landsliding in Seattle, Washington. Rev Eng Geol 20:137–152

    Google Scholar 

  • Goetz JN, Brenning A, Petschko H, Leopold P (2015) Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci 81:1–11. https://doi.org/10.1016/j.cageo.2015.04.007

    Article  Google Scholar 

  • Gorsevski PV, Brown MK, Panter K, Onasch CM, Simic A, Snyder J (2016) Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio. Landslides 13:467–484. https://doi.org/10.1007/s10346-015-0587-0

    Article  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models: with applications in R. Ecology, biodiversity and conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. https://doi.org/10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Hengl T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33:1301–1315. https://doi.org/10.1016/j.cageo.2007.05.001

    Article  Google Scholar 

  • Hengl T, Heuvelink GBM, Kempen B, Leenaars JGB, Walsh MG, Shepherd KD, Sila A, MacMillan RA, Mendes de Jesus J, Tamene L, Tondoh JE (2015) Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS One 10:e0125814. https://doi.org/10.1371/journal.pone.0125814

    Article  Google Scholar 

  • Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12:e0169748. https://doi.org/10.1371/journal.pone.0169748

    Article  Google Scholar 

  • Huang F, Zhang J, Zhou C, Wang Y, Huang J, Zhu L (2019) A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 12:1077–1229. https://doi.org/10.1007/s10346-019-01274-9

    Article  Google Scholar 

  • Hungr O, Evans SG, Hutchinson IN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194

  • Ilia I, Tsangaratos P (2016) Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 13:379–397. https://doi.org/10.1007/s10346-015-0576-3

    Article  Google Scholar 

  • Jelínek R, Wagner P (2007) Landslide hazard zonation by deterministic analysis (Veľká Čausa landslide area, Slovakia). Landslides 4:339–350. https://doi.org/10.1007/s10346-007-0089-9

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int. Yearb. Cartography 7:186–190

  • Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349:255–260. https://doi.org/10.1126/science.aaa8415

    Article  Google Scholar 

  • Kavoura K, Sabatakakis N (2019) Investigating landslide susceptibility procedures in Greece. Landslides 76:237–145. https://doi.org/10.1007/s10346-019-01271-y

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439

    Article  Google Scholar 

  • Kim HG, Lee DK, Park C, Ahn Y, Kil S-H, Sung S, Biging GS (2018) Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods. Stoch Env Res Risk A 32:2987–3019. https://doi.org/10.1007/s00477-018-1609-y

    Article  Google Scholar 

  • Kornejady A, Ownegh M, Bahremand A (2017) Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. CATENA 152:144–162. https://doi.org/10.1016/j.catena.2017.01.010

    Article  Google Scholar 

  • Krkač M, Špoljarić D, Bernat S, Arbanas SM (2017) Method for prediction of landslide movements based on random forests. Landslides 14:947–960. https://doi.org/10.1007/s10346-016-0761-z

    Article  Google Scholar 

  • Lagomarsino D, Tofani V, Segoni S, Catani F, Casagli N (2017) A tool for classification and regression using random forests methodology: applications to landslide susceptibility mapping and soil thickness modelling. Environ Model Assess

  • Lasanta-Martínez T, Vicente-Serrano SM, Cuadrat-Prats JM (2005) Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: a study of the Spanish Central Pyrenees. Appl Geogr 25:47–65. https://doi.org/10.1016/j.apgeog.2004.11.001

    Article  Google Scholar 

  • Lee S, Ryu J-H, Won J-S, Park H-J (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302. https://doi.org/10.1016/S0013-7952(03)00142-X

    Article  Google Scholar 

  • Lesschen JP, Cammeraat LH, Nieman T (2008) Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surf Process Landf 33:1574–1584. https://doi.org/10.1002/esp.1676

    Article  Google Scholar 

  • Liu L, Li S, Li X, Jiang Y, Wei W, Wang Z, Bai Y (2019) An integrated approach for landslide susceptibility mapping by considering spatial correlation and fractal distribution of clustered landslide data. Landslides 16(4):715–728

  • Meng Q, Miao F, Zhen J, Wang X, Wang A, Peng Y, Fan Q (2016) GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China. Bull Eng Geol Environ 75(3):923–944

    Article  Google Scholar 

  • Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: simplified method of estimation. J Soil Water Conserv 47(5):423–428

    Google Scholar 

  • Moreno-de-las-Heras M, Lindenberger F, Latron J, Lana-Renault N, Llorens P, Arnáez J, Romero-Díaz A, Gallart F (2019) Hydro-geomorphological consequences of the abandonment of agricultural terraces in the Mediterranean region: key controlling factors and landscape stability patterns. Geomorphology 333:73–91. https://doi.org/10.1016/j.geomorph.2019.02.014

    Article  Google Scholar 

  • Mousavi SZ, Kavian A, Soleimani K, Mousavi SR, Shirzadi A (2011) GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics, Natural Hazards Risk 2(1):33–50

    Article  Google Scholar 

  • Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. Front Neurorobot 7:21. https://doi.org/10.3389/fnbot.2013.00021

    Article  Google Scholar 

  • Neuhäuser B, Damm B, Terhorst B (2012) GIS-based assessment of landslide susceptibility on the base of the weights-of-evidence model. Landslides 9:511–528. https://doi.org/10.1007/s10346-011-0305-5

    Article  Google Scholar 

  • Park HJ, Jang JY, Lee JH (2019) Assessment of rainfall-induced landslide susceptibility at the regional scale using a physically based model and fuzzy-based Monte Carlo simulation. Landslides 16:695–713. https://doi.org/10.1007/s10346-018-01125-z

    Article  Google Scholar 

  • Peh KK, Lim CP, Quek SS, Khoh KH (2000) Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor. Pharm Res 17:1384–1388. https://doi.org/10.1023/a:1007578321803

    Article  Google Scholar 

  • Pepe G, Mandarino A, Raso E, Scarpellini P, Brandolini P, Cevasco A (2019) Investigation on farmland abandonment of terraced slopes using multitemporal data sources comparison and its implication on hydro-geomorphological processes. Water 11(8):1552. https://doi.org/10.3390/w11081552

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Prakash I (2017) Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study. Geotech Geol Eng 35:2597–2611. https://doi.org/10.1007/s10706-017-0264-2

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Prakash I (2018) Bagging based support vector machines for spatial prediction of landslides. Environ Earth Sci 77:47. https://doi.org/10.1007/s12665-018-7268-y

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography

  • Pijanowski BC, Brown DG, Shellito BA, Manik GA (2002) Using neural networks and GIS to forecast land use changes: a land transformation model. Comput Environ Urban Syst 26:553–575. https://doi.org/10.1016/S0198-9715(01)00015-1

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides 7:13–30. https://doi.org/10.1007/s10346-009-0183-2

    Article  Google Scholar 

  • R Core (2018) Team. R: a language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.R-project.org/

  • Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703. https://doi.org/10.1111/j.1365-2699.2006.01466.x

    Article  Google Scholar 

  • Raso E, Mandarino A, Pepe G, Di Martire D, Cevasco A, Calcaterra D, Firpo M (2019a) Landslide inventory of the Cinque Terre National Park, Italy. In IAEG/AEG Annual Meeting Proceedings, San Francisco California 2018-Volume 1 (pp. 201-205). Springer, Cham

  • Raso E, Cevasco A, Di Martire D, Pepe G, Scarpellini P, Calcaterra D, Firpo M (2019b) Landslide-inventory of the Cinque Terre National Park (Italy) and quantitative interaction with the trail network. J Maps 15:818–830. https://doi.org/10.1080/17445647.2019.1657511

    Article  Google Scholar 

  • Raso E, Di Martire D, Cevasco A, Calcaterra D, Scarpellini P, Firpo M (2019c) Evaluation of prediction capability of the MaxEnt and Frequency Ratio methods for landslide susceptibility in the Vernazza catchment (Cinque Terre, Italy). Springer book “Applied Geology: Approaches to Future Resource Management” (in press)

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91. https://doi.org/10.1016/j.earscirev.2018.03.001

    Article  Google Scholar 

  • Sadr MP, Maghsoudi A, Saljoughi BS (2014) Landslide susceptibility mapping of Komroud sub-basin using fuzzy logic approach. Geodynamics Res Int Bull 2(2):XVI–XXVIII

    Google Scholar 

  • Schapire RE (1990) The strength of weak learnability. Mach Learn 5(2):197–227

    Google Scholar 

  • Schilirò L, Montrasio L, Scarascia Mugnozza G (2016) Prediction of shallow landslide occurrence: validation of a physically-based approach through a real case study. Sci Total Environ 569-570:134–144. https://doi.org/10.1016/j.scitotenv.2016.06.124

    Article  Google Scholar 

  • Schilirò L, Cevasco A, Esposito C, Mugnozza GS (2018) Shallow landslide initiation on terraced slopes: inferences from a physically based approach. Geomatics, Natural Hazards Risk 9:295–324. https://doi.org/10.1080/19475705.2018.1430066

    Article  Google Scholar 

  • Segoni S, Lagomarsino D, Fanti R, Moretti S, Casagli N (2015) Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides 12:773–785. https://doi.org/10.1007/s10346-014-0502-0

    Article  Google Scholar 

  • Segoni S, Tofani V, Rosi A, Catani F, Casagli N (2018) Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. Front Earth Sci 6:85

    Article  Google Scholar 

  • Segoni S, Pappafico G, Luti T, Catani, F (2020) Landslide susceptibility assessment in complex geological settings: sensitivity to geological information and insights on its parameterization. Landslides 1–11. https://doi.org/10.1007/s10346-019-01340-2

  • Sepe C, Confuorto P, Angrisani AC, Di Martire D, Di Napoli M, Calcaterra D (2019) Application of statistical approach to landslide susceptibility map generation in urban settings. In Proc IAEG/AEG Annu Meeting Proc. Springer, Cham, San Francisco, vol. 1, pp 155–162

  • Sharma A, Tiwari KN, Bhadoria PBS (2011) Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ Monit Assess 173:789–801. https://doi.org/10.1007/s10661-010-1423-6

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615

    Article  Google Scholar 

  • Tarolli P, Preti F, Romano N (2014) Terraced landscapes: from an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 6:10–25. https://doi.org/10.1016/j.ancene.2014.03.002

    Article  Google Scholar 

  • Teerarungsigul S, Torizin J, Fuchs M, Kühn F, Chonglakmani C (2016) An integrative approach for regional landslide susceptibility assessment using weight of evidence method: a case study of Yom River basin, Phrae Province, northern Thailand. Landslides 13:1151–1165. https://doi.org/10.1007/s10346-015-0659-1

    Article  Google Scholar 

  • Terranova R (1984) Aspetti geomorfologici e geologico-ambientali delle Cinque Terre: rapporti con le opere umane. Studi e ricerche di Geografia 7:38–90 (In Italian)

    Google Scholar 

  • Terranova R, Zanzucchi G, Bernini M, Brandolini P, Campobasso S, Faccini F, Zanzucchi F (2006) Geologia, geomorfologia e vini del parco Nazionale delle Cinque Terre (Liguria, Italia). Boll Soc Geol Ital 6:115–128 (In Italian)

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography 32:369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R, Breiner F (2016) biomod2: ensemble platform for species distribution modeling. R Package Version 3:3–7. https://CRAN.R-project.org/package¼biomod2

  • Trigila A, Iadanza C, Esposito C, Scarascia-Mugnozza G (2015) Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 249:119–136. https://doi.org/10.1016/j.geomorph.2015.06.001

    Article  Google Scholar 

  • Tsangaratos P, Ilia I (2016a) Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size. CATENA 145:164–179. https://doi.org/10.1016/j.catena.2016.06.004

    Article  Google Scholar 

  • Tsangaratos P, Ilia I (2016b) Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi perfection, Greece. Landslides 13:305–320. https://doi.org/10.1007/s10346-015-0565-6

    Article  Google Scholar 

  • Tsangaratos P, Ilia I, Hong H, Chen W, Xu C (2017) Applying information theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides 14:1091–1111. https://doi.org/10.1007/s10346-016-0769-4

    Article  Google Scholar 

  • Tukey JW (1953) Some selected quick and easy methods of statistical analysis. Trans N Y Acad Sci 16:88–97. https://doi.org/10.1111/j.2164-0947.1953.tb01326.x

    Article  Google Scholar 

  • Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS (2014) Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in west Sumatera Province, Indonesia. CATENA 118:124–135. https://doi.org/10.1016/j.catena.2014.02.005

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e

    Article  Google Scholar 

  • Vorpahl P, Elsenbeer H, Märker M, Schröder B (2012) How can statistical models help to determine driving factors of landslides? Ecol Model 239:27–39. https://doi.org/10.1016/j.ecolmodel.2011.12.007

    Article  Google Scholar 

  • Wang LJ, Guo M, Sawada K, Lin J, Zhang J (2015) Landslide susceptibility mapping in Mizunami City, Japan: a comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena 135:271–282

    Article  Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. Wiley, Hoboken

    Google Scholar 

  • Xiao T, Segoni S, Chen L, Yin K, Casagli N (2019) A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches. Landslides 5:853–640. https://doi.org/10.1007/s10346-019-01299-0

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85:274–287. https://doi.org/10.1016/j.catena.2011.01.014

    Article  Google Scholar 

  • Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China. Geomorphology 101 (4):572–582. https://doi.org/10.1016/j.geomorph.2008.02.011

  • Yeon Y-K, Han J-G, Ryu KH (2010) Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng Geol 116:274–283. https://doi.org/10.1016/j.enggeo.2010.09.009

    Article  Google Scholar 

  • Youssef AM, Al-Kathery M, Pradhan B (2015) Landslide susceptibility mapping at Al-Hasher area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosci J 19(1):113–134

    Article  Google Scholar 

  • Zurada JM (1992) Introduction to artificial neural systems, vol 8. West publishing company, St. Paul

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Centro Studi Rischi Geologici of the Cinque Terre National Park. The authors also thank Dr. Alessandro Novellino (British Geological Survey) for revising the text and for providing valuable advice. Finally, the authors thank Consorzio interUniversitario per la prevenzione dei Grandi Rischi (CUGRI) for providing technological support. In addition, the authors would like to thank the two anonymous reviewers for their valuable and insightful comments to improve the paper.

Funding

The Cinque Terre National Park and its Director, Eng. Patrizio Scarpellini, provided funding for this project and for logistic support during field operations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Confuorto.

Electronic supplementary material

ESM 1

(DOCX 29 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Napoli, M., Carotenuto, F., Cevasco, A. et al. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 17, 1897–1914 (2020). https://doi.org/10.1007/s10346-020-01392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-020-01392-9

Keywords

Navigation