Skip to main content

Advertisement

Log in

Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The purpose of this study was to detect shallow landslides using hillshade maps derived from light detection and ranging (LiDAR)-based digital elevation model (DEM) derivatives. The landslide susceptibility mapping used an artificial neural network (ANN) approach and backpropagation method that was tested in the northern portion of the Cuyahoga Valley National Park (CVNP) located in northeast Ohio. The relationship between landslides and predictor attributes, which describe landform classes using slope, profile and plan curvatures, upslope drainage area, annual solar radiation, and wetness index, was extracted from LiDAR-based DEM using geographic information system (GIS). The approach presented in this paper required a training study area for the development of the susceptibility model and a validation study area to test the model. The results from the validation showed that within the very high susceptibility class, a total of 42.6 % of known landslides that were associated with 1.56 % of total area were correctly predicted. In contrast, the very low susceptibility class that represented 82.68 % of the total area was associated with 1.20 % of known landslides. The results suggest that the majority of the known landslides occur within a small portion of the study area, consistent with field investigation and other studies. Sample probabilistic maps of landslide susceptibility potential and other products from this approach are summarized and presented for visualization to help park officials in effective management and planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson K, Croft H (2009) Remote sensing of soil surface properties. Prog Phys Geogr 33(4):457–473

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazard Earth Syst 2:3–14

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR. Nat Hazard Earth Syst 7:637–650

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81

    Article  Google Scholar 

  • Bain A (1873) Mind and body: theories of their relation. D. Appleton & Company, New York

    Google Scholar 

  • Barredo JI, Benavides A, Hervas J, van Westen CJ (2000) Comparing heuristic landslide hazards assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int J Appl Earth Obs Geoinformation 2:10–22

    Article  Google Scholar 

  • Basheer A, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43:3–31

    Article  Google Scholar 

  • Booth AM, Roering JJ, Perron JT (2009) Automated landslide mapping using spectral analysis and high resolution topographic data: Puget Sound lowlands, Washington and Portland Hills, Oregon. Geomorphology 109:132–147

    Article  Google Scholar 

  • Bork EW, Su JG (2007) Integrating LiDAR data and multispectral imagery from enhanced classification of rangeland vegetation: a meta-analysis. Remote Sens Environ 111:11–24

    Article  Google Scholar 

  • Calabro MD, Schmidt DA, Roering JJ (2010) An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry. J Geophys Res 115, F02020. doi:10.1029/2009JF001314

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1992) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara F, Guzzetti A (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 135–175

    Chapter  Google Scholar 

  • Chen Q, Gong P, Baldocchi DD, Xie G (2007) Filtering airborne laser scanning data with morphological methods. Photogramm Eng Remote Sens 73:175–185

    Article  Google Scholar 

  • Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43:27–29

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2000) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391

    Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Dewitte O, Jasselatte JC, Cornet Y, Van Den Eeckhaut M, Collignon A, Poesen J, Demoulin A (2008) Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophtogrammetric and LiDAR approach in western Belgium. Eng Geol 99:11–22

    Article  Google Scholar 

  • Eastman JR (2012) IDRISI Selva. Clark University, Worcester

    Google Scholar 

  • Egmont-Petersen M, de Ridder D, Handels H (2002) Image processing with neural networks—a review. Pattern Recognit 35:2279–2301

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343

    Article  Google Scholar 

  • Evans IS, Hengl T, Gorsevski PV (2009) Geomorphometry: applications in geomorphology. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications, vol 33, Development in soil science. Elsevier, Amsterdam, pp 497–525

    Chapter  Google Scholar 

  • Fiorucci F, Cardinali M, Carla R, Rossi M, Mondini AC, Santurri L, Ardizzone F, Guzzetti F (2011) Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology 129:59–70

    Article  Google Scholar 

  • Fleming RW, Taylor FA (1980) Estimating the cost of landslide damage in the United States. U S Geol Surv Circ 832:1–21

    Google Scholar 

  • Ford JP (1987) Glacial and surficial geology of Cuyahoga County, Ohio. Ohio Department of Natural Resources, Rep Investigations 134:1–29

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:261–289

    Article  Google Scholar 

  • Gao J (2008) Digital analysis of remotely sensed imagery. McGraw-Hill, New York

    Google Scholar 

  • García-Davalillo JC, Herrera G, Notti D, Strozzi T, Álvarez-Fernández I (2014) DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides 11:225–246

    Article  Google Scholar 

  • Giannecchini R, Galanti Y, D’Amato Avanzi G (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat Hazards Earth Syst Sci 12:829–842. doi:10.5194/nhess-12-829-2012

    Article  Google Scholar 

  • Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148

    Article  Google Scholar 

  • Goddard D (1998) Dick Goddard’s weather guide and almanac for Northeast Ohio. Gray & Company, Cleveland

    Google Scholar 

  • Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol 102:214–226

    Article  Google Scholar 

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27

    Article  Google Scholar 

  • Gorsevski PV (2002) Landslide hazard modeling using GIS. Dissertation, University of Idaho

  • Gorsevski PV, Jankowski P (2008) Discerning landslide susceptibility using rough sets. Comput Environ Urban Syst 32:53–65

    Article  Google Scholar 

  • Gorsevski PV, Jankowski P (2010) An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter. Comput Geosci 36(8):1005–1020

    Article  Google Scholar 

  • Gorsevski PV, Gessler PE, Foltz RB (2000) Spatial prediction of landslides hazard using logistic regression and GIS. 4th International Conference on Integrating GIS and Environmental Modeling (GIS/EM4), Problems, Prospects and Research Needs, Banff, Alberta, Canada, September 2–8

  • Gorsevski PV, Gessler PE, Jankowski P (2003) Integrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard. J Geogr Syst 5:223–251

    Article  Google Scholar 

  • Gorsevski PV, Jankowski P, Gessler PE (2005) Spatial prediction of landslide hazard using fuzzy k-means and Dempster-Shafer theory. Trans GIS 9(4):455–474

    Article  Google Scholar 

  • Gorsevski PV, Gessler PE, Boll J, Elliot WJ, Foltz RB (2006a) Spatially and temporally distributed modeling of landslide susceptibility. Geomorphology 80(3–4):178–198

    Article  Google Scholar 

  • Gorsevski PV, Gessler PE, Foltz RB, Elliot WJ (2006b) Spatial prediction of landslides hazard using logistic regression and ROC analysis. Trans GIS 10(3):395–415

    Article  Google Scholar 

  • Gorsevski PV, Jankowski P, Gessler PE (2006c) An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control Cybern 35(1):121–146

    Google Scholar 

  • Gorsevski PV, Gessler PE, Jankowski P (2010) A fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Heidelberg, pp 653–684

    Chapter  Google Scholar 

  • Haneberg WC (2005) The ins and outs of airborne LiDAR: an introduction for practicing engineering geologist. AEG News 48:16–19

    Google Scholar 

  • Hansen MC (1995) Landslides in Ohio. Geofacts, Ohio Department of Natural Resources, Division of Geological Survey, No. 8. http://www.dnr.state.oh.us/Portals/10/pdf/GeoFacts/geof08.pdf. Accessed 14 Apr 2011

  • Hengl T, Reuter HI (2009) Geomorphometry: concepts, software, applications. Development in soil science 33. Elsevier, Amsterdam, p 772

    Google Scholar 

  • Hengl T, Gruber S, Shrestha DP (2003) Digital terrain analysis in ILWIS. http://www.itc.nl/library/papers_2003/misca/hengl_digital.pdf. Accessed 10 Jun 2011

  • Hopkinson C, Chasmer L (2008) Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sens Environ 113:275–288

    Article  Google Scholar 

  • Hopkinson C, Chasmer LE, Sass G, Creed IF, Sitar M, Kalbfeisch W, Treitz P (2005) Vegetation class dependent errors in LiDAR ground elevation and canopy height estimates in a boreal wetland environment. Can J Remote Sens 31(2):191–206

    Article  Google Scholar 

  • Ioannilli M, Paregiani A (2008) Automated unsupervised geomorphometric classification of Earth surface for landslide susceptibility assessment. In Proceeding of the International Conference on Computational Science and its Applications part 1, 268–283

  • Iwahashi J, Pike RJ (2007) Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 86(3–4):409–440

    Article  Google Scholar 

  • James W (1890) The principles of psychology. H. Holt & Company, New York

    Book  Google Scholar 

  • Jones ML, Shakoor A (1989) Some landslide hazards in northern Summit County, Ohio. Bull Assoc Eng Geol 26(3):335–368

    Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85(3–4):347–366

    Article  Google Scholar 

  • Kimura H, Yamaguchi Y (2000) Detection of landslide areas using satellite radar interferometry. Photogramm Eng Remote Sens 66(3):337–344

    Google Scholar 

  • Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with aerial laser scanner data. ISPRS J Photogramm Remote Sens 53:193–203

    Article  Google Scholar 

  • Lee S, Evangelista DG (2006) Earthquake-induced landslide-susceptibility mapping using an artificial neural network. Nat Hazards Earth Syst Sci 6:687–695

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2006) The application of artificial neural networks to landslide susceptibility mapping at Janghung, Korea. Math Geol 38(2):199–220

    Article  Google Scholar 

  • Lippman RP (1987) An introduction to computing with neural nets. IEEE Acoust Speech Signal Process Mag 4:4–22

    Google Scholar 

  • Liu X (2008) Airborne LiDAR for DEM generation: some critical issues. Prog Phys Geogr 32:31–49

    Article  Google Scholar 

  • Liu X, Peterson J, Zhang Z (2005) High-resolution DEM generation from LiDAR data for water resource management. In Proceedings of International Congress on Modeling and Simulation MODSIM05: Advances and Applications for Management and Decision Making, December 2005, Melbourne, Australia

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  Google Scholar 

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351

    Article  Google Scholar 

  • McKenna JP, Lidke DJ, Coe JA (2008) Landslides mapped from LIDAR imagery, Kitsap County, Washington. US Geol Surv Open-File Report 2008-1292, 1-81. http://pubs.usgs.gov/of/2008/1292/downloads/OF08-1292.pdf

  • Melchiorre C, Matteucci M, Azzoni A, Zanchi A (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94:379–400

    Article  Google Scholar 

  • Meng X, Wang L, Currit N (2009) Morphology-based building detection from airborne LIDAR data. Photogramm Eng Remote Sens 75:427–442

    Google Scholar 

  • Miller BB (1983) Late Quaternary fluvial history of the lower Cuyahoga River in northeastern Ohio. J Great Lakes Res 9(1):97–105

    Article  Google Scholar 

  • Miner AS, Flentje P, Mazengarb C, Windle DJ (2010) Landslide recognition using LiDAR derived digital elevation models—lessons learnt from selected Australian examples. In: Williams A L, Pinches GM, Chin CY, McMorran TJ, Massey CI (eds) Geologically active: Proceedings of the 11th IAEG Congress of the International Association of Engineering Geology and the Environment, Auckland, New Zealand, Boca Raton, CRC, pp. 1–9

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171

    Article  Google Scholar 

  • Murillo-García FG, Alcántara-Ayala I, Ardizzone F, Cardinali M, Fiourucci F, Guzzetti F (2015) Satellite stereoscopic pair images of very high resolution: a step forward for the development of landslide inventories. Landslides 12:277–291

    Article  Google Scholar 

  • Nandi A (2007) Factors affecting the frequency and distribution of landslides in selected counties in northeast Ohio. Dissertation, Kent State University

  • Nandi A, Shakoor A (2006) Preparation of a landslide, susceptibility map of Summit County, Ohio, USA, using numerical models. Geol Soc Lond 660:1–11

    Google Scholar 

  • Nandi A, Shakoor A (2007) Application of logistic regression model for slope instability prediction in Cuyahoga River watershed, Ohio, USA. GeoRisk 2(1):16–27

    Google Scholar 

  • Nandi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analysis. Eng Geol 110:11–20

    Article  Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97(3–4):171–191

    Article  Google Scholar 

  • Ohio Geographically Referenced Information Program (OGRIP) (2006) Ohio Statewide Imagery Program, Ohio Office of Information Technology. http://ogrip.oit.ohio.gov. Accessed 28 Dec 2012

  • Pennock DJ, Zebarth BJ, de Jong E (1987) Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma 40:297–315

    Article  Google Scholar 

  • Pohana RE (1992) Landslide remediation and prevention by the city of Cincinnati. Boulder Colorado Geol Soc Am Abst Prog 24:A204

    Google Scholar 

  • Pradhan B, Lee S (2007) Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model. Earth Sci Front 14(6):143–152

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Regional landslide susceptibility analysis using back propagating neural network model at Cameron Highland, Malaysia. Landslides 7:13–30

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2010) A GIS back propagation neural network model and its cross-application and validation for landslide susceptibility analysis. Comput Environ Urban Syst 34:216–235

    Article  Google Scholar 

  • Rabbania T, van den Heuvelb FA, Vosselmanc G (2006) Segmentation of point clouds using smoothness constraint. Int Arch Photogramm Remote Sens Spatial Inf Sci 36:248–253

    Google Scholar 

  • Razak KA, Straatsma MW, van Westen CJ, Malet JP, De Jong SM (2011) Airborne laser scanning of forested landslide characterization: terrain model quality and visualization. Geomorphology 126(1–2):186–200

    Article  Google Scholar 

  • Regmi NR, Giardino JR, Vitek JD (2010a) Assessing susceptibility to landslides: using models to understand observed changes in slopes. Geomorphology 122:25–38

    Article  Google Scholar 

  • Regmi NR, Giardino JR, Vitek JD (2010b) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115:172–187

    Article  Google Scholar 

  • Ruff M, Czurda K (2008) Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology 94:314–324

    Article  Google Scholar 

  • Santacana N, Baeza B, Corominas J, De Paz A, Marturin J (2003) A GIS-based multivariate statistical analysis for shallow landslides susceptibility mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Nat Hazards 30:281–295

    Article  Google Scholar 

  • Schulz WH (2004) Landslides mapped using LiDAR imagery, Seattle, Washington. US Geol Surv Open-File Report 2004-1396, 1-11

  • Schulz WH (2007) Landslides susceptibility revealed by LiDAR imagery and historical records, Seattle, Washington. Eng Geol 89:67–87

    Article  Google Scholar 

  • Singh LP, van Westen CJ, Champati Ray PK, Pasquali P (2005) Accuracy assessment of InSAR derived input maps for landslide susceptibility analysis: a case study from the Swiss Alps. Landslides 2:221–228

    Article  Google Scholar 

  • State of Ohio (2008) State of Ohio Hazard Mitigation Plan, Section 2.5 Landslides, 126–137. http://ohiosharpp.ema.state.oh.us/OhioSHARPP/Documents/SHMP/2-HIRA/SOHMP_Sec_2_5.pdf. Accessed 27 Nov 2011

  • Suzen ML, Doyuran V (2003) Data driven bivariate landslide susceptibility assessment using geographic information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321

    Article  Google Scholar 

  • Szabo JP (1986) Wisconsinan stratigraphy of the Cuyahoga Valley in the Erie Basin, northeastern Ohio. Can J Earth Sci 24:279–290

    Article  Google Scholar 

  • Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33(2):309–319

    Article  Google Scholar 

  • Van Den Eeckaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:292–410

    Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, Van Beek LPH (2005) The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 67:351–363

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, Van Beek LPH, Vandekerckhove L (2007) Use of LiDAR-derived images for mapping old landslides under forest. Earth Surf Process Landf 32:754–769

    Article  Google Scholar 

  • van Westen CJ (2000) The modeling of landslide hazards using GIS. Surv Geophys 21:241–255

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176. Transportation Research Board, Washington, pp 11–33

    Google Scholar 

  • Ventura SJ, Irvin BJ (2000) Automated landform classification methods for soil-landscape studies. In: Wilson JP, Gallant JC (eds) Terrain analysis principles and applications. Wiley, New York, pp 267–294

    Google Scholar 

  • Werbos PJ (1975) Beyond regression: new tools for prediction and analysis in the behavior sciences. Dissertation, Harvard University

  • White GW (1982) Glacial geology of northeast Ohio. Ohio Dep Nat Resour Bull 68:1–75

    Google Scholar 

  • White GW (1984) Glacial geology of Summit County, Ohio. Ohio Department of Natural Resources Report of Investigations 123:1–25

  • Wilson JP, Gallant JC (2000) Terrain analysis principles and applications. Wiley, New York

    Google Scholar 

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31(8):2097–2110

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek Region (Turkey). Eng Geol 79:251–266

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat, Turkey). Comput Geosci 35:1125–1138

    Article  Google Scholar 

  • Yilmaz I, Keskin I (2009) GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey). Bull Eng Geol Environ 68:459–471

    Article  Google Scholar 

  • Zhang L, Gruen A (2006) Multi-image matching for DSM generation from IKONOS imagery. ISPRS J Photogramm Remote Sens 60:195–211

    Article  Google Scholar 

  • Zhang K, Whitman D (2005) Comparison of three algorithms for filtering airborne LiDAR data. Photogramm Eng Remote Sens 71:313–324

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous reviewers, who provided helpful suggestions and excellent additions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pece V. Gorsevski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorsevski, P.V., Brown, M.K., Panter, K. et al. Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio. Landslides 13, 467–484 (2016). https://doi.org/10.1007/s10346-015-0587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0587-0

Keywords

Navigation