Skip to main content

Advertisement

Log in

130 years of cyclodextrin discovery for health, food, agriculture, and the industry: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Cyclodextrins are a group of cyclic oligosaccharides obtained by enzymatic degradation of starch. They are remarkable macrocyclic molecules that have led major theoretical and practical advances in chemistry, biology, biochemistry, health science, and agriculture. Their molecular structure is composed of a hydrophobic cavity that can encapsulate other compounds to form inclusion complexes through host–guest interactions. This unique feature is at the origin of many applications. Cyclodextrins and their derivatives have a wide variety of practical applications in almost all sectors of the industry, including pharmacy, medicine, foods, cosmetics, chromatography, catalysis, biotechnology, and the textile industry. Villiers published the first reference to cyclodextrins in 1891, and since then, these molecules have continued to fascinate academia and industry. Currently, more than 2000 publications on cyclodextrins are published each year. On the occasion of the 130th anniversary of their discovery, in this review, we present an historical overview of the development and applications of cyclodextrins. First, we present the discovery and first chemical studies on cyclodextrins. Then, the main results obtained during the 1911–1970 exploration period are discussed. A third part presents the historical landmarks in the development of cyclodextrins from 1970 to the present day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

adapted from Lüttringhaus et al. (1958)

Fig. 7
Fig. 8

adapted from Saenger et al. (1976)

Fig. 9

adapted from Szejtli (1978) and Szejtli et al. (1979)

Fig. 10

adapted from Uekama and Hirayama (1978) and Hirayama et al. (1980)

Fig. 11

adapted from Szejtli (2003)

Fig. 12

Similar content being viewed by others

References

  • Adeoye O, Figueiredo A, CabralMarques H (2017) Chapter 13: cyclodextrins and skin disorders: therapeutic and cosmetic applications. In: Ascenso A, Ribeiro H, Simões S (eds) Carrier-mediated dermal delivery. Jenny Stanford Publishing, New York. https://doi.org/10.4324/9781315364476

    Chapter  Google Scholar 

  • Akiya S, Okui S (1951) Studies of the degeneration process of sugars. 3. Reactions of periodic acid on 2 hexasaccharides. J Pharm Soc Jpn 71:865–869

    Article  CAS  Google Scholar 

  • Akiya S, Watanabe T (1950a) A crystalline decomposition product of starch by a bacillus. 3. A new strain of Bacillus macerans. J Pharm Soc Jpn 70:572–576

    Article  CAS  Google Scholar 

  • Akiya S, Watanabe T (1950b) A crystalline decomposition product of starch by a bacillus. 4. A new hexasaccharide. J Pharm Soc Jpn 70:576–578

    Article  CAS  Google Scholar 

  • Akiya S, Watanabe T (1950c) A crystalline decomposition product of starch by a bacillus. 5. Structure of the new hexasaccharide. J Pharm Soc Jpn 70:579–582

    Article  CAS  Google Scholar 

  • Ammayappan L, Moses JJ (2009) An overview on application of cyclodextrins in textile product enhancement. J Text Assoc 70:9–18

    Google Scholar 

  • Andersen GH, Robbins FM, Domingues FJ, Moores RG, Long CL (1963) The utilization of Schardinger dextrins by the rat. Toxicol Appl Pharmacol 5:257–266

    Article  CAS  Google Scholar 

  • Andreaus J, Dalmolin MC, De Oliveira IB, Barcellos IO (2010) Application of cyclodextrins in textile processes. Quim Nova 33:929–937. https://doi.org/10.1590/S0100-40422010000400031

    Article  CAS  Google Scholar 

  • Arima H, Motoyama K, Higashi T (2017) Potential use of cyclodextrins as drug carriers and active pharmaceutical ingredients. Chem Pharm Bull 65:341–348. https://doi.org/10.1248/cpb.c16-00779

    Article  CAS  Google Scholar 

  • Armspach D, Gattuso G, Koeniger R, Stoddart JF (1999) Cyclodextrins. In: Hecht SM (ed) Bioorganic chemistry: carbohydrates. Oxford University Press Inc, New York, pp 458–488

    Google Scholar 

  • Armstrong DW (1980) Pseudophase liquid chromatography: applications to TLC. J Liq Chromatogr 3:895–900

    Article  CAS  Google Scholar 

  • Armstrong DW (1984) Chiral stationary phases for high performance liquid chromatographic separation of enantiomers: a mini-review. J Liq Chromatogr 2:353–376

    Article  Google Scholar 

  • Armstrong DW, Jin HL (1989) Liquid-chromatographic separation of anomeric forms of saccharides with cyclodextrin bonded phases. Chirality 1:27–37. https://doi.org/10.1002/chir.530010108

    Article  CAS  Google Scholar 

  • Arora D, Saneja A, Jaglan S (2019) Cyclodextrin-based delivery systems for dietary pharmaceuticals. Environ Chem Lett 17:1263–1270. https://doi.org/10.1007/s10311-019-00878-w

    Article  CAS  Google Scholar 

  • Artiss JD, Brogan K, Brucal M, Moghaddam M, Jen KL (2006) The effects of a new soluble dietary fiber on weight gain and selected blood parameters in rats. Metabolism 55:195–202

    Article  CAS  Google Scholar 

  • Assaf KI, Gabela D, Zimmermann W, Nau WM (2016) High-affinity host-guest chemistry of large-ring cyclodextrins. Org Biomol Chem 14:7702–7706. https://doi.org/10.1039/c6ob01161f

    Article  CAS  Google Scholar 

  • Astray G, Mejuto JC, Simal-Gandara J (2020) Latest developments in the application of cyclodextrin host-guest complexes in beverage technology processes. Food Hydrocoll 106:105882. https://doi.org/10.1016/j.foodhyd.2020.105882

    Article  CAS  Google Scholar 

  • Atteia O, Estrada ED, Bertin H (2013) Soil flushing: a review of the origin of efficiency variability. Rev Environ Sci Bio-Technol 12:379–389. https://doi.org/10.1007/s11157-013-9316-0

    Article  CAS  Google Scholar 

  • Aubert-Viard F, Mogrovejo-Valdivia A, Tabary N, Maton M, Chai F, Neut C, Martel B, Blanchemain N (2019) Evaluation of antibacterial textile covered by layer-by-layer coating and loaded with chlorhexidine for wound dressing application. Mater Sci Eng C 100:554–563. https://doi.org/10.1016/j.msec.2019.03.044

    Article  CAS  Google Scholar 

  • Aytac Z, Uyar T (2017) Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin. Int J Pharm 518:177–184. https://doi.org/10.1016/j.ijpharm.2016.12.061

    Article  CAS  Google Scholar 

  • Aytac Z, Sen HS, Durgun E, Uyar T (2015) Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf B Biointerfaces 128:331–338. https://doi.org/10.1016/j.colsurfb.2015.02.019

    Article  CAS  Google Scholar 

  • Aytac Z, Yildiz ZI, Kayaci F, San NO, Kusku SI, Durgun E, Tekinay T, Uyar T (2016) Fast-dissolving, prolonged release and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J Agric Food Chem 64:7325–7334. https://doi.org/10.1021/acs.jafc.6b02632

    Article  CAS  Google Scholar 

  • Bailey JM, French D (1957) The significance of multiple reactions in enzyme-polymer systems. J Biol Chem 226:1–14

    Article  CAS  Google Scholar 

  • Barbosa PFP, Cumba LR, Andrade RDA, do Carmo DR (2019) Chemical modifications of cyclodextrin and chitosan for biological and environmental applications: metals and organic pollutants adsorption and removal. J Polym Environ 27:1352–1366. https://doi.org/10.1007/s10924-019-01434-x

    Article  CAS  Google Scholar 

  • Bates FL, French D, Rundle RE (1943) Amylose and amylopectin content of starches determined by their iodine complex formation. J Am Chem Soc 65:142–148. https://doi.org/10.1021/ja01242a003

    Article  CAS  Google Scholar 

  • Bender ML, Komiyama M (1978) Cyclodextrin chemistry. Reactivity and structure: concepts in organic chemistry, vol 6. Springer, Berlin

    Book  Google Scholar 

  • Benkovics G, Afonso D, Darcsi A, Béni S, Conoci S, Fenyvesi É, Szente L, Malanga M, Sortino S (2017) Novel β-cyclodextrin-eosin conjugates. Beilstein J Org Chem 13:543–551. https://doi.org/10.3762/bjoc.13.52

    Article  CAS  Google Scholar 

  • Bezerra FM, Lis MJ, Firmino HB, da Silva JGD, Valle RDSC, Valle JAB, Scacchetti FAP, Tessaro AL (2020) The role of beta-cyclodextrin in the textile industry—review. Molecules 25:3624. https://doi.org/10.3390/molecules25163624

    Article  CAS  Google Scholar 

  • Bilensoy E (ed) (2011) Cyclodextrins in pharmaceutics, cosmetics and biomedicine. Current and future industrial applications. Hoboken, Wiley, p 395. https://doi.org/10.1002/9780470926819

    Book  Google Scholar 

  • Biltz W (1913) Über den osmotischen druck der kolloide. Fünfte mitteilung: zur kolloidchemie der dextrine. Z Phys Chem 83:683–707. https://doi.org/10.1515/zpch-1913-8348

    Article  CAS  Google Scholar 

  • Biltz W, Truthe W (1913) Über die molekulargrösse von dextrin β. Ber Dtsch Chem Ges 46:1377–1380. https://doi.org/10.1002/cber.19130460217

    Article  CAS  Google Scholar 

  • Borchert W (1948) Röntgenographische untersuchungen an Shardinger-dextrinen. Z Naturforsch B 3:464–465

    Google Scholar 

  • Brackman G, Garcia-Fernandez MJ, Lenoir J, De Meyer L, Remon JP, De Beer T, Concheiro A, Alvarez-Lorenzo C, Coenye T (2016) Dressings loaded with cyclodextrin-hamamelitannin complexes increase Staphylococcus aureus susceptibility toward antibiotics both in single as well as in mixed biofilm communities. Macromol Biosc 16:859–869. https://doi.org/10.1002/mabi.201500437

    Article  CAS  Google Scholar 

  • Braga SS (2019) Cyclodextrins: emerging medicines of the new millennium. Biomolecules 9:801. https://doi.org/10.3390/biom9120801

    Article  CAS  Google Scholar 

  • Brauns U, Müller BW (1983) Pharmaceutical compositions drugs which are unstable or sparingly soluble in water, and methods for their preparation. European Patent No. 149197, 21 March 1990, with priority from German Patent DE No. 3346123, 21 December 1983

  • Breslow R (1979) Biomimetic chemistry in oriented systems. Israel J Chem 18:187–191

    Article  CAS  Google Scholar 

  • Breslow R, Dong SD (1998) Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem Rev 98:1997–2012. https://doi.org/10.1021/cr970011j

    Article  CAS  Google Scholar 

  • Brewster ME, Loftsson T (2002) The use of chemically modified cyclodextrins in the development of formulations for chemical delivery systems. Pharmazie 57:94–101

    CAS  Google Scholar 

  • Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–666. https://doi.org/10.1016/j.addr.2007.05.012

    Article  CAS  Google Scholar 

  • Brewster ME, Loftsson T, Bodor N (2004) Applications of chemically-modified cyclodextrins: use of hydroxypropyl-beta-cyclodextrin as an enabling excipient for brain targeting, redox-based derivatives of estradiol a review of preclinical and clinical findings. J Drug Del Sci Technol 14:32–34

    Google Scholar 

  • Buschmann HJ, Schollmeyer EJ (2002) Applications of cyclodextrins in cosmetic products: a review. J Cosmetic Sci 53:185–191

    CAS  Google Scholar 

  • Buschmann HJ, Schollmeyer E (2004) Cosmetic textiles: a new functionality of clothes. Cosmet Toiletries 11:105–112

    Google Scholar 

  • Buschmann HJ, Denter U, Knittel D, Schollmeyer E (1998) The use of cyclodextrins in textile processes—an overview. J Text Inst 89:554–561. https://doi.org/10.1080/00405009808658641

    Article  CAS  Google Scholar 

  • Caesar GV (1968) The Schardinger dextrins. In: Radley JA (ed) Starch and its derivatives, chapter X, 4th edn. Chapman and Hall Ltd., EC4, London, pp 290–305

    Google Scholar 

  • Campos EVR, de Oliveira JL, Fraceto LF, Singh B (2015) Polysaccharides as safer release systems for agrochemicals. Agron Sustain Dev 35:47–66. https://doi.org/10.1007/s13593-014-0263-0

    Article  CAS  Google Scholar 

  • Carneiro SB, Duarte FIC, Heimfarth L, Quintans JDS, Quintans LJ, da Veiga VF, de Lima AAN (2019) Cyclodextrin-drug inclusion complexes: in vivo and in vitro approaches. Int J Mol Sci 20:642. https://doi.org/10.3390/ijms20030642

    Article  CAS  Google Scholar 

  • Casu B, Reggiani M, Gallo GG, Vigevani A (1965) NMR spectra and conformation of glucose and some related carbohydrates in dimethylsulphoxide solution. Tetrahedron Lett 27:2253–2259

    Article  Google Scholar 

  • Casu B, Gallo GG, Reggiani M, Vigevani A (1968a) Applications of magnetic resonance spectroscopy of hydroxyl protons to analysis of starch-derived products. Starch/Stärke 20:387–391. https://doi.org/10.1002/star.19680201202

    Article  CAS  Google Scholar 

  • Casu B, Reggiani M, Gallo GG, Vigevani A (1968b) Applications of magnetic resonance spectroscopy of the hydroxyl protons to the analysis of starch-derived products. X Congress of the Italian Chemical Society, Padova, Italy

    Book  Google Scholar 

  • Casu B, Reggiani M, Gallo GG, Vigevani A (1968c) Conformation of O-methylated amylose and cyclodextrins. Tetrahedron 24:803–821. https://doi.org/10.1016/0040-4020(68)88030-5

    Article  Google Scholar 

  • Casu B, Reggiani M, Gallo GG, Vigevani A (1970) Conformation of acetylated cyclodextrins Celebioglu A, Demirci S, Uyar T (2014) Cyclodextrin-grafted electrospun cellulose acetate nanofibers via click reaction for removal of phenanthrene. Appl Surf Sci 305:581–588. https://doi.org/10.1016/j.apsusc.2014.03.138

    Article  CAS  Google Scholar 

  • Celebioglu A, Uyar T (2012) Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale 4:621–631. https://doi.org/10.1039/c1nr11364j

    Article  CAS  Google Scholar 

  • Celebioglu A, Uyar T (2013) Electrospinning of nanofibers from non-polymeric systems: electrospun nanofibers from native cyclodextrins. J Colloid Int Sci 404:1–7. https://doi.org/10.1016/j.jcis.2013.04.034

    Article  CAS  Google Scholar 

  • Celebioglu A, Sen HS, Durgun E, Uyar T (2016) Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere 144:736–744. https://doi.org/10.1016/j.chemosphere.2015.09.029

    Article  CAS  Google Scholar 

  • Chai F, Maton M, Degoutin S, Vermet G, Simon N, Rousseaux C, Martel B, Blanchemain N (2019) In vivo evaluation of post-operative pain reduction on rat model after implantation of intraperitoneal PET meshes functionalized with cyclodextrins and loaded with ropivacaine. Biomaterials 192:260–270. https://doi.org/10.1016/j.biomaterials.2018.07.032

    Article  CAS  Google Scholar 

  • Chankvetadze B (2004) Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. Chem Soc Rev 33(6):337–347. https://doi.org/10.1039/b111412n

    Article  CAS  Google Scholar 

  • Chen YQ, Gui X, Duan ZB, Zhu LJ, Xiang YZ, Xia DH (2019) Transition metal catalyzed organic reaction involving cyclodextrin. Chin J Org Chem 39:1284–1292. https://doi.org/10.6023/cjoc201809012

    Article  CAS  Google Scholar 

  • Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJC, Kadam VJ (2014) Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery. Expert Opin Drug Del 11:111–120. https://doi.org/10.1517/17425247.2014.865013

    Article  CAS  Google Scholar 

  • Chiu KW, Robson S, Devi JL, Woodward A, Whittem T (2016) The cardiopulmonary effects and quality of anesthesia after induction with alfaxalone in 2-hydroxypropyl-beta-cyclodextrin in dogs and cats: a systematic review. J Vet Pharm Ther 39:525–538. https://doi.org/10.1111/jvp.12312

    Article  CAS  Google Scholar 

  • Chow DD, Karara AH (1986) Characterization, dissolution and bioavailability in rats of ibuprofen-β-cyclodextrin complex. Int J Pharm 28:95–101

    Article  CAS  Google Scholar 

  • Citernesi U, Sciacchitano M (1995) Cyclodextrins in functional dermocosmetics. Cosmet Toilet 110:53–61

    CAS  Google Scholar 

  • Clarke RJ, Coates JH, Lincoln SF (1988) Inclusion complexes of cyclomalto-oligosaccharides (cyclodextrins). Adv Carbohydr Chem Biochem 46:205–249

    Article  CAS  Google Scholar 

  • Comini S, Mentink L (1991) Refining mixtures containing complexes of cyclodextrins with lipophilic compounds such as fatty acids. European Patent 440539

  • Conceição J, Adeoye O, Cabral-Marques HM, Sousa Lobo JM (2018) Cyclodextrins as excipients in tablet formulations. Drug Discov Today 23:1274–1284. https://doi.org/10.1016/j.drudis.2018.04.009

    Article  CAS  Google Scholar 

  • Cova TFGG, Murtinho D, Pais AACC, Valente AJM (2018) Cyclodextrin-based materials for removing micropollutants from wastewater. Curr Org Chem 22:2150–2181. https://doi.org/10.2174/1385272822666181019125315

    Article  CAS  Google Scholar 

  • Cramer F (1949) Die cyclodextrine aus Stärke. Dissertation, Heidelberg

  • Cramer F (1951a) Einschlussverbindungen von cyclodextrinen und die jod-reaktion der starke. Angew Chem 63:487

    Google Scholar 

  • Cramer F (1951b) Über Einschlussverbindungen, I. Mitteilung, additionsversbindungen der cycloamylosen. Chem Ber 84:851–854

    Article  CAS  Google Scholar 

  • Cramer F (1951c) Über Einschlussverbindungen, II. Mitteilung, die blauen jodadditionsverbindungen organischer moleküle. Chem Ber 84:855–859

    Article  CAS  Google Scholar 

  • Cramer F (1952) Einschluβverbindungen. Angew Chem 64:437–447

    Article  CAS  Google Scholar 

  • Cramer F (1953) Über einschlussverbindungen. 5. Basenkatalyse durch innermolekulare hohlraume. Chem Ber Recl 86:1576–1581

    Article  CAS  Google Scholar 

  • Cramer F (1954) Einschlussverbindungen. Springer, Berlin. ISBN 978-3-642-49192-4

    Book  Google Scholar 

  • Cramer F (1955) Umglucosidierung mit einer amylase aus Bacillus macerans. Angew Chem Int Ed 67:714

    Google Scholar 

  • Cramer F (1956) Einschluβverbindungen. Angew Chem 68(1956):115–120

    Article  Google Scholar 

  • Cramer F (1961) Probleme der Chemischen polynucleotide synthese. Angew Chem Int Ed 73:49

    Article  CAS  Google Scholar 

  • Cramer (1987) Introduction. In: cyclodextrins and their industrial uses. Duchêne D (ed), Paris: éditions de santé, pp. 11-18. ISBN: 2-86411-019-9

  • Cramer F, Dietsche W (1958) Asymetric catalysis by inclusion compounds. Chem Ind 28:892–893

    Google Scholar 

  • Cramer F, Dietsche W (1959a) Occlusion compounds. 15. Resolution of racemates with cyclodextrins. Chem Ber 92:378–384

    Article  CAS  Google Scholar 

  • Cramer F, Dietsche W (1959b) Uber einschlussverbindungen. 16. Sterospezifische reaktionen mit einschlussverbindungen. Chem Ber 92:1739–1755

    Article  CAS  Google Scholar 

  • Cramer F, Henglein FM (1956) Einschlussverbindungen der cyclodextrine mit gasen. Angew Chem Int Ed 68:649

    Google Scholar 

  • Cramer F, Henglein FM (1957a) Über einschlussverbindungen. 11. Gesetzmassigkeiten bei der bildung von addukten der cyclodextrine. Chem Ber Rel 90:2561–2571

    Article  CAS  Google Scholar 

  • Cramer F, Henglein FM (1957b) Über einschlussverbindungen. 12. Verbindungen von alpha-cyclodextrin mit gasen. Chem Ber Recl 90:2572–2575

    Article  CAS  Google Scholar 

  • Cramer F, Hettler H (1967) Inclusion compounds of cyclodextrins. Naturwissenschaften 54:625–632

    Article  CAS  Google Scholar 

  • Cramer F, Kampe W (1962) Katalyse der decarboxylierung durch cyclodextrine. Eine modellreaktion fur die wirkungsweise der enzyme. Tetrahedron Lett 8:353–356

    Article  Google Scholar 

  • Cramer F, Kampe W (1965) Inclusion compounds. 17. Catalysis of decarboxylation by cyclodextrins. A model reaction for mechanism of enzymes. J Am Chem Soc 87:1115–1118

    Article  CAS  Google Scholar 

  • Cramer F, Steinle D (1955) Die wirkungsweise der amylase aus Bacillus macerans. Ann Chem Justus Liebig 595:81–100

    Article  CAS  Google Scholar 

  • Cramer F, Saenger W, Spatz HC (1967) Inclusion compounds. XIX. The formation of inclusion compounds of α-cyclodextrin in aqueous solutions. Thermodynamics and kinetics. J Am Chem Soc 89:14–20

    Article  CAS  Google Scholar 

  • Cramer F, MacKensen G, Sensse K (1969) Über einschlussverbindungen, XX ORD-spektren und konformation der glucose-einheiten in cyclodextrin. Chem Ber 102:494–508

    Article  CAS  Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70. https://doi.org/10.1016/j.progpolymsci.2004.11.002

    Article  CAS  Google Scholar 

  • Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114:10940–10975. https://doi.org/10.1021/cr500081p

    Article  CAS  Google Scholar 

  • Crini G (2020a) The contribution of Franz Schardinger to cyclodextrins: a tribute on the occasion of the centenary of his death. J Incl Phenom Macrocyclic Chem 97:19–28. https://doi.org/10.1007/s10847-020-00990-3

    Article  CAS  Google Scholar 

  • Crini G (2020b) Twenty years of dextrin research: a tribute to professor Hans Pringsheim (1876–1940). J Incl Phenom Macrocyclic Chem 98:11–27. https://doi.org/10.1007/s10847-020-01013-x

    Article  CAS  Google Scholar 

  • Crini G, Morcellet M (2002) Synthesis and applications of adsorbents containing cyclodextrins. J Sep Sci 25:789–813. https://doi.org/10.1002/1615-9314(20020901)25:13%3c789:AID-JSSC789%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  • Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N (2018) Cyclodextrins, from molecules to applications. Environ Chem Lett 16:1361–1375. https://doi.org/10.1007/s10311-018-0763-2

    Article  CAS  Google Scholar 

  • Crini G, Fourmentin S, Lichtfouse E (2020). The history of cyclodextrins. Environmental Chemistry for a sustainable World 52. Springer Nature Switzerland, Cham. ISBN: 978-3-030-49307-3

  • Croft AP, Bartsch RA (1983) Synthesis of chemically modified cyclodextrins. Tetrahedron 9:1417–1474

    Article  Google Scholar 

  • Cserhati T, Dobrovolszky A, Fenyvesi E, Szejtli J (1983) Beta-cyclodextrin polymer beads as GC packings. J High Res Chromatogr 6:442–443

    Article  CAS  Google Scholar 

  • Cutrone G, Benkovics G, Malanga M, Casas-Solvas JM, Fenyvesi É, Sortino S, García-Fuentes L, Vargas-Berenguel A (2018) Mannoside and 1,2-mannobioside β-cyclodextrin-scaffolded NO-photodonors for targeting antibiotic resistant bacteria. Carbohydr Polym 199:649–660. https://doi.org/10.1016/j.carbpol.2018.07.018

    Article  CAS  Google Scholar 

  • Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev 3:1023–1035. https://doi.org/10.1038/nrd1576

    Article  CAS  Google Scholar 

  • Dhiman P, Bhatia M (2020) Pharmaceutical applications of cyclodextrins and their derivatives. J Incl Phenom Macrocyclic Chem 98:171–186. https://doi.org/10.1007/s10847-020-01029-3

    Article  CAS  Google Scholar 

  • Dietrich HV, Cramer F (1954) Über Einschlussverbindungen, VII. Mitteilung, zür struktur der jodketten in kanal-einschlussverbindungen. Chem Ber 87:806–817

    Article  Google Scholar 

  • Dong RJ, Zhou YF, Huang XH, Zhu XY, Lu YF, Shen J (2015) Functional supramolecular polymers for biomedical applications. Adv Mater 27:498–526. https://doi.org/10.1002/adma.201402975

    Article  CAS  Google Scholar 

  • Duchêne D (1987) Cyclodextrins and their industrial uses. Éditions de Santé, Paris

    Google Scholar 

  • Duchêne D (1991) New trends in cyclodextrins and derivatives. Éditions de Santé, Paris

    Google Scholar 

  • Duchêne D, Bochot A, Loftsson T (2009) Cyclodextrins and their use in pharmacy and cosmetology. STP Pharma Pratiques 19:15–27

    Google Scholar 

  • Egele K, Samaddar S, Schneider N, Thompson D, Wenz G (2019) Synthesis of the anionic hydroxypropyl-β-cyclodextrin:poly(decamethylenephosphate) polyrotaxane and evaluation of its cholesterol efflux potential in Niemann-Pick C1 cells. J Mater Chem B 7:528–537. https://doi.org/10.1039/C8TB02950D

    Article  CAS  Google Scholar 

  • Endo T, Nagase H, Ueda H, Kobayashi S, Nagai T (1997) Isolation, purification, and characterization of cyclomaltodecaose (epsilon-cyclodextrin), cyclomaltoundecaose (zeta-cyclodextrin) and cyclomaltotriodecaose (theta-cyclodextrin). Chem Pharm Bull 45:532–536

    Article  CAS  Google Scholar 

  • Endo T, Nagase H, Ueda H, Kobayashi S, Shiro M (1999) Crystal structure of cyclomaltodecaose (epsilon-cyclodextrine) at 203 K. Anal Sci 15:613–614

    Article  CAS  Google Scholar 

  • Escuder-Gilabert L, Martin-Biosca Y, Medina-Hernandez MJ, Sagrado S (2014) Cyclodextrins in capillary electrophoresis: recent developments and new trends. J Chromatogr A 1357:2–23. https://doi.org/10.1016/j.chroma.2014.05.074

    Article  CAS  Google Scholar 

  • Fanali S (1993) Use of cyclodextrins in capillary electrophoresis. In: capillary electrophoresis Technology. In: Guzman NA (ed) Chromatographic science series. New York: Marcel Dekker Inc. vol 64, part V, pp 731–752. ISBN: 0-8247-9042-1

  • Fanali S, Cristalli M, Vespalec R, Bocek P (1994) Chiral separations in capillary electrophoresis. In: advances in electrophoresis. In: Chrambach A, Dunn MJ, Radola BJ (eds) Weinheim: VCH Verlagsgesellschaft mbH, chapter 7, pp 1–88

  • Fenyvesi É (1988) Cyclodextrin polymers in the pharmaceutical industry. J Incl Phenom 6:537–545

    Article  CAS  Google Scholar 

  • Fenyvesi É, Szente (2016) Nanoencapsulation of flavors and aromas by cyclodextrins. In: Grumezescu A (ed) Encapsulations. Nanotechnology in the agri-food industry. 1st edn, vol 2, chapter 18, pp 769–792. ISBN: 978-0-12-804378-3

  • Fenyvesi É, Vikmon M, Szente L (2016) Cyclodextrins in food technology and human nutrition: benefits and limitations. Crit Rev Food Sci Nutr 56:1981–2004. https://doi.org/10.1080/10408398.2013.809513

    Article  CAS  Google Scholar 

  • Fenyvesi É, Puskas I, Szente L (2019) Applications of steroid drugs entrapped in cyclodextrins. Environ Chem Lett 17:375–391. https://doi.org/10.1007/s10311-018-0807-7

    Article  CAS  Google Scholar 

  • Fernandez MA, Fernando OF, Vico RV, de Rossi RH (2019) Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 480:12–34. https://doi.org/10.1016/j.carres.2019.05.006

    Article  CAS  Google Scholar 

  • Fourmentin S, Crini G, Lichtfouse E (2018a) Cyclodextrins applications in medicine, food, environment and lLiquid crystals. Environmental chemistry for a sustainable world. Springer, Basel. ISBN 978-3-319-76162-6

    Book  Google Scholar 

  • Fourmentin S, Crini G, Lichtfouse E (2018b) Cyclodextrins fundamentals, reactivity and analysis. Environmental chemistry for a sustainable world. Springer, Basel. ISBN 978-3-319-76159-6

    Book  Google Scholar 

  • French D (1957a) The Schardinger dextrins. In: Wolfrom ML (ed) Advances in carbohydrate chemistry, vol 12. Academic Press Inc, New York, pp 189–260

    Google Scholar 

  • French D (1957b) Preparation of Schardinger dextrins. Methods Enzymol 3:17–20. https://doi.org/10.1016/S0076-6879(57)03341-8

    Article  Google Scholar 

  • French D (1960) Determination of starch structure by enzymes. Bull Soc Chim Biol 42:1677–1689

    CAS  Google Scholar 

  • French D (1962) Cyclodextrin transglycosylase (Bacillus macerans amylase). In: Collowick SP, Kaplan NO (eds) Methods in enzymology. Academic New York, vol 5, pp 148–155. https://doi.org/10.1016/S0076-6879(62)05197-6

  • French D, Abdullah M (1965) Branched Schardinger dextrins. Feder Proc 24:221–223

    Google Scholar 

  • French D, McIntire RL (1950) Studies on the Schardinger dextrins. V. Periodate oxidation. J Am Chem Soc 72:5148–5150. https://doi.org/10.1021/ja01167a095

    Article  CAS  Google Scholar 

  • French D, Rundle RE (1942) The molecular weights of the Schardinger alpha and beta dextrins. J Am Chem Soc 64:1651–1653. https://doi.org/10.1021/ja01259a050

    Article  CAS  Google Scholar 

  • French D, Pazur JH, Levine ML, Norberg E (1948) Reversible action of macerans amylase. J Am Chem Soc 70:3145. https://doi.org/10.1021/ja01189a512

    Article  CAS  Google Scholar 

  • French D, Levine ML, Pazur JH, Norberg E (1949a) Studies on the Schardinger dextrins. The preparation and solubility characteristics of alpha-dextrins, beta-dextrins, and gamma-dextrins. J Am Chem Soc 71:353–356. https://doi.org/10.1021/ja01169a100

    Article  CAS  Google Scholar 

  • French D, Levine ML, Pazur JH (1949b) Studies on the Schardinger dextrins. II. Preparation and properties of amyloheptaose. J Am Chem Soc 71:356–358. https://doi.org/10.1021/ja01169a101

    Article  CAS  Google Scholar 

  • French D, Levine ML, Pazur JH, Norberg E (1950a) Studies on the Schardinger dextrins. IV. The action of soy bean beta amylase on amyloheptaose. J Am Chem Soc 72:1746–1748. https://doi.org/10.1021/ja01160a093

    Article  CAS  Google Scholar 

  • French D, Knapp D, Pazur JH (1950b) Studies on the Schardinger dextrins. VI. The molecular size and structure of the γ-dextrin. J Am Chem Soc 72:5150–5152. https://doi.org/10.1021/ja01167a096

    Article  CAS  Google Scholar 

  • French D, Levine ML, Norberg E, Nordin P, Pazur JH, Wild GM (1954) Studies on the Schardinger dextrins. VII. Co-substrate specificity in coupling reactions of Macerans amylase. J Am Chem Soc 76:2387–2390

    Article  CAS  Google Scholar 

  • French D, Pulley AO, Whelan WJ (1963) Preparation of Schardinger dextrins on a larger-than-laboratory scale. Die Stärke 8:280–284

    Article  Google Scholar 

  • French D, Pulley AO, Effenberger JA, Rougvie MA, Abdullah M (1965) Studies on the Schardinger dextrins. XII. The molecular size and structure of the delta-, epsilon-, zeta-, and eta-dextrins. Archiv Biochem Biophys 111:153–160. https://doi.org/10.1016/0003-9861(65)90334-6

    Article  CAS  Google Scholar 

  • Freudenberg K (1934) Beiträge zur chemie der stärke und anderer polysaccharide. Angew Chemie 39:675–677

    Article  Google Scholar 

  • Freudenberg K (1939) Polysaccharides and lignin. Annu Rev Biochem 8:81–112

    Article  CAS  Google Scholar 

  • Freudenberg K (1943) Beiträge zur chemie der kohlenhydrate. Ber Dtsch Chem Ges 76:A71–A96

    Article  Google Scholar 

  • Freudenberg K (1955) Contributions to the chemistry of high molecular natural substances. J Polym Sci 16:155–162

    Article  CAS  Google Scholar 

  • Freudenberg K (1957a) Hydrolysis and optical rotation of cellulose, starch, and cycloglucans. J Polym Sci 23:791–799

    Article  CAS  Google Scholar 

  • Freudenberg K (1957b) Beiträge zur chemie der stärke und der cycloglucane (Schardinger-dextrine). Angew Chemie 69:419–422

    Article  CAS  Google Scholar 

  • Freudenberg K (1962) Beiträge zur chemie der cellulose und der stärke. Starch-Stärke 15:199–208

    Article  Google Scholar 

  • Freudenberg K, Cramer F (1948) Die constitution der Schardinger-dextrine dextrine-alpha, dextrin-beta and dextrin-gamma. Z Naturforsch B 3:464

    Article  Google Scholar 

  • Freudenberg K, Cramer F (1950) Über die Schardinger-dextrine aus stärke. Chem Ber Recl 83:296–304

    Article  CAS  Google Scholar 

  • Freudenberg K, Ivers O (1922) Synthesen gemischt-acylierter halogen zucker. Ber Dtsch Chem Ges 55:929–941. https://doi.org/10.1002/cber.19220550416

    Article  Google Scholar 

  • Freudenberg K, Jacobi R (1935) Über Schardingers dextrin aus stärke. Justus Liebigs Ann Chem 518:102–108

    Article  CAS  Google Scholar 

  • Freudenberg K, Meyer-Delius M (1938) Über die Schardinger-dextrine aus stärke. Ber Dtsch Chem Ges 71:1596–1600

    Article  Google Scholar 

  • Freudenberg K, Meyer-Delius M (1939) Neue ansichten über die stärke. Naturwissenschaften 27:850–853. https://doi.org/10.1007/BF01489430

    Article  CAS  Google Scholar 

  • Freudenberg K, Rapp W (1936) Zur kenntnis der stärke und der Schardinger-dextrine. Ber Dtsch Chem Ges 69:2041–2045

    Article  Google Scholar 

  • Freudenberg K, Blomqvist G, Ewald L, Soff K (1936) Hydrolyse und acetolyse der stärke und der Schardinger-dextrine. Ber Dtsch Chem Ges 69:1258–1266

    Article  Google Scholar 

  • Freudenberg K, Boppel H, Meyer-Delius M (1938) Observations on starch. Naturwissenschaften 26:123–124

    Article  CAS  Google Scholar 

  • Freudenberg K, Schaaf E, Dumpert G, Ploetz T (1939) New aspects of starch. Naturwissenschaften 27:850–853

    Article  CAS  Google Scholar 

  • Freudenberg K, Plankenhorn E, Knauber H (1947a) Uber Schardinger dextrine aus stärke. Ann Chem Justus Liebig 558:1–10

    Article  CAS  Google Scholar 

  • Freudenberg K, Plankenhorn E, Knauber H (1947b) Schardinger’s dextrins—Derived from starch. Chem Ind 48:731–735

    Google Scholar 

  • Freudenberg K, Cramer F, Plieningen H (1953) Verfahren zur Herstellung von Einschlussverbindungen Physiologisch Wirksamer Organischer Verbindungen. Knoll AG, Chemische Fabriken, German Patent DBP 895.769, November 1953

  • Frömming KH, Szejtli J (1994) Cyclodextrins in pharmacy. Topics in inclusion science, vol 5. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gentili A (2020) Cyclodextrin-based sorbents for solid phase extraction. J Chromatogr A 1609:460654. https://doi.org/10.1016/j.chroma.2019.460654

    Article  CAS  Google Scholar 

  • Gilmore D, Colson YL (2011) Tumor targeted nanoparticles: a modern day Trojan horse. Semin Thorac Cardiovasc Surg 23:10–11. https://doi.org/10.1053/j.semtcvs.2011.03.004

    Article  Google Scholar 

  • Grachev MK, Kurochkina GI, Popkov AV (2019) The features of synthesis and chemical behavior of some silicon-containing cyclodextrin derivatives. Russ Chem Bull 68:708–716. https://doi.org/10.1007/s11172-019-2477-4

    Article  CAS  Google Scholar 

  • Gramera R (1969) Cyclodextrin polyethers and their production. US Patent No. 3459731, October 1969

  • Griffiths DW, Bender ML (1973) Cycloamyloses as catalysts. Adv Catal 23:209–261. https://doi.org/10.1016/S0360-0564(08)60302-8

    Article  CAS  Google Scholar 

  • Gruiz K, Molnar M, Fenyvesi É, Cs Hajdu, Atkari A, Barkacs K (2011) Cyclodextrins in innovative engineering tools for risk-based environmental management. J Incl Phenom Macrocycl Chem 70:299–306. https://doi.org/10.1007/s10847-010-9909-y

    Article  CAS  Google Scholar 

  • Gruiz K, Meggyes T, Fenyvesi É (eds) (2019) Engineering tools for environmental risk management. Volume 4. Risk reduction technologies and case studies. CRC Press, Boca Raton. https://doi.org/10.1201/b20405

  • Guo J, Russell EG, Darcy R, Cotter TG, McKenna SL, Cahill MR, O’Driscoll CM (2017) Antibody-targeted cyclodextrin-based nanoparticles for siRNA Delivery in the treatment of acute myeloid leukemia: physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Mol Pharm 14:940–952. https://doi.org/10.1021/acs.molpharmaceut.6b01150

    Article  CAS  Google Scholar 

  • Hamada Y, Nambu N, Nagai T (1975) Pharmaceutical interactions in dosage forms and processing. III. Interactions of α- and β-cyclodextrin with several nonsteroidal antiinflammatory drugs in aqueous solution. Chem Pharm Bull 23:1205–1211

    Article  CAS  Google Scholar 

  • Hammoud Z, Khreich N, Auezova L, Fourmentin S, Elaissari A, Greige-Gerges H (2019) Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 564:59–76. https://doi.org/10.1016/j.ijpharm.2019.03.063

    Article  CAS  Google Scholar 

  • Han JH (2005) Innovations in food packaging. Food Science and Technology, International Series. ISBN 0-12-311632-5

    Google Scholar 

  • Han SM, Armstrong DW (1989) HPLC separation of enantiomers and other isomers with cyclodextrin-bonded phases: rules for chiral recognition. In: Chiral Separations by HPLC. New York: Ellis Horwood Limited, Wiley, New York. Krstulovic AM (ed), chapter 10, pp 208–284

  • Han YY, Liu WCJ, Huang JW, Qiu SR, Zhong H, Liu D, Liu JQ (2018) Cyclodextrin-based metal-organic frameworks (CD-MOFs) in pharmaceutics and biomedicine. Pharmaceutics 10:271. https://doi.org/10.3390/pharmaceutics10040271

    Article  CAS  Google Scholar 

  • Hapiot F, Bricout H, Menuel S, Tilloy S, Monflier E (2014) Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catal Sci Technol 4:1899–1908. https://doi.org/10.1039/C4CY00005F

    Article  CAS  Google Scholar 

  • Hashimoto HJ (1996) Cyclodextrins in foods, cosmetics, and toiletries. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3. Pergamon Oxford, London, pp 483–502

    Google Scholar 

  • Hashimoto HJ (2002) Present status of industrial applications of cyclodextrins in Japan. J Inclu Phenom Macrocycl Chem 44:57–62

    Article  CAS  Google Scholar 

  • Hashimoto H (2006) Cyclodextrin applications in food, cosmetic, toiletry, textile and wrapping materiel fields. In: Dodziuk H (ed) Cyclodextrins and their complexes. Chemistry, analytical methods, applications, chapter 16. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, pp 452–459. https://doi.org/10.1002/3527608982.ch16

  • Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044

    Article  CAS  Google Scholar 

  • Hedges AR, Shieh WJ, Sikorski CT, (1995) Use of cyclodextrins for encapsulation in the use and treatment of food products. In: Risch SJ, Reineccius GA (eds) Encapsulation and controlled release of food ingredients. ACS Sym. Ser. 590. American Chemical Society, Washington, DC, pp 60–71

  • Hess K, Trogus M, Ulmann M (1933) Information on the modifications of alpha-dextrin by F Schardinger. Z Phys Chem Abt B 21:1–6

    Google Scholar 

  • Higashi T (2019) Cyclodextrin-based molecular accessories for drug discovery and drug delivery. Chem Pharm Bull 67:289–298. https://doi.org/10.1248/cpb.c18-00735

    Article  CAS  Google Scholar 

  • Higashi T, Iohara D, Motoyama K, Arima H (2018) Supramolecular pharmaceutical sciences: a novel concept combining pharmaceutical sciences and supramolecular chemistry with a focus on cyclodextrin-based supermolecules. Chem Pharm Bull 66:207–216

    Article  CAS  Google Scholar 

  • Hinze WL (1981) Applications of cyclodextrins in chromatographic separations and purification methods. Sep Purif Methods 10:159–237

    Article  CAS  Google Scholar 

  • Hirakawa H, Tomita H (2013) Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Front Microbiol 4:114. https://doi.org/10.3389/fmicb.2013.00114

    Article  Google Scholar 

  • Hirayama F, Uekama K, Koinuma H (1980) Molecular dynamics of prostaglandin F-cyclodextrin complexes in aqueous solution. Chem Pharm Bull 28:1975–1980

    Article  CAS  Google Scholar 

  • Hoesslin H, Pringsheim H (1923) Physiology of the polyamyloses. II. Glycogen formation and animal combustion. Hoppe-Seiler’s Z Physiol Chem 131:168–176

    Article  Google Scholar 

  • Horikoshi K (1979) Production and industrial applications of beta-cyclodextrin. Proc Biochem 14:26–30

    CAS  Google Scholar 

  • Hou XS, Ke CF, Stoddart JF (2016) Cooperative capture synthesis: yet another playground for copper-free click chemistry. Chem Soc Rev 45:3766–3780. https://doi.org/10.1039/c6cs00055j

    Article  CAS  Google Scholar 

  • Hussain Asim M, Ijaz M, Rösch AC, Bernkop-Schnürch A (2020) Thiolated cyclodextrins: new perspectives for old excipients. Coord Chem Rev 420:213433. https://doi.org/10.1016/j.ccr.2020.213433

    Article  CAS  Google Scholar 

  • Hybl A, Rundle RE, Williams DE (1965) The crystal and molecular structure of the cyclohexaamylose-potassium acetate complex. J Am Chem Soc 87:2779–2788. https://doi.org/10.1021/ja01091a001

    Article  CAS  Google Scholar 

  • Irvine JC, Pringsheim H, MacDonald J (1924) CXIV—The constitution of polysaccharides. Part VIII. The molecular structure of β-hexa-amylose. J Chem Soc Trans 125:942–947

    Article  CAS  Google Scholar 

  • Irvine JC, Pringsheim H, Skinner AF (1929) Die methylierung der α-tetra-amylose. Ber Dtsch Chem Ges 62:2372–2378. https://doi.org/10.1002/cber.19290620873

    Article  Google Scholar 

  • Ito K (2017) Slide-ring materials using cyclodextrin. Chem Pharm Bull 65:326–329. https://doi.org/10.1248/cpb.c16-00874

    Article  CAS  Google Scholar 

  • James WJ, French D, Rundle RE (1959) Studies on the Schardinger dextrins. 9. Structure of the cyclohexaamylose-iodine complex. Acta Crystallogr 12:385–389. https://doi.org/10.1107/S0365110X59001141

    Article  CAS  Google Scholar 

  • Jiang L, Liu C, Mayumi K, Kato K, Yokoyama H, Ito K (2018) Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem Mater 30:5013–5019. https://doi.org/10.1021/acs.chemmater.8b01208

    Article  CAS  Google Scholar 

  • Jicsinszky L, Fenyvesi É, Hashimoto H, Ueno A (1996) Cyclodextrin derivatives. In: Atwood JL, Davies JE, MacNicol DD, Vögtle F, Szejtli J, Osa T (eds) comprehensive supramolecular chemistry, London, Elsevier Science Ltd. vol 3, chap 4, pp 57–188. ISBN: 978-008-0912-844

  • Junthip J, Tabary N, Chai F, Leclercq L, Maton M, Cazaux F, Neut C, Paccou L, Guinet Y, Staelens JN, Bria M, Landy D, Hedoux A, Blanchemain N, Martel B (2016) Layer-by-layer coating of textile with two oppositely charged cyclodextrin polyelectrolytes for extended drug delivery. J Biomed Mater Res Part A104:408–1424. https://doi.org/10.1002/jbm.a.35674

    Article  CAS  Google Scholar 

  • Kainuma K (1984) Starch oligosaccharides: linear, branched, and cyclic. In: Whistler RL, BeMiller JN, Paschall EF (eds) Starch—chemistry and technology, 2nd edn. Academic Press Ltd., London, chapter V, pp 125–152. https://doi.org/10.1016/B978-0-12-746270-7.50011-2

  • Karrer P (1920) The understanding of polysaccharides I. Methylation of starch. Helv Chim Acta 3:620–625

    Article  CAS  Google Scholar 

  • Karrer P (1921) Polysaccharides XI. The compounds of anhydrosugar with caustic alkali. A method for determining the basic elements of polymeric anhydrosugar. Helv Chim Acta 4:811–816

    Article  CAS  Google Scholar 

  • Karrer P (1922) Untersuchungen über polymere kohlenhydrate. Angew Chem 35:85–90

    Article  CAS  Google Scholar 

  • Karrer P (1923) Polysaccharides XX. Zur kenntniss polymerer kohlenhydrate. Helv Chim Acta 6:402–409

    Article  CAS  Google Scholar 

  • Karrer P (1925) Polymere kohlenhydrate. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Karrer P, Bürkin E (1922) Polysaccharides XIV. On the understanding of amylose. Helv Chim Acta 5:181–187

    Article  CAS  Google Scholar 

  • Karrer P, Nägeli C (1921a) Polysaccharides II. On the constitution of diarrylose. Helv Chim Acta 4:169–172

    Article  CAS  Google Scholar 

  • Karrer P, Nägeli C (1921b) Structure of potato starch. Helv Chim Acta 4:185–202

    Article  CAS  Google Scholar 

  • Karrer P, Nägeli C, Hurwitz O, Wälti A (1921) Polysaccharides VIII. Zur kenntnis der stärke und der amylosen. Helv Chim Acta 4:678–699

    Article  CAS  Google Scholar 

  • Karrer P, Staub M, Wälti A (1922) Polysaccharides XIII. On the understanding of inulin and the alkali hydroxide bonding of anhydrous sugar. Helv Chim Acta 5:129–139

    Article  CAS  Google Scholar 

  • Kashiwagi Y, Katashima T, Nakahata M, Takashima Y, Harada A, Inoue T (2018) Linear viscoelastic studies on a transient network formed by host-guest interaction. J Polym Sci B Polym Phys 56:1109–1117. https://doi.org/10.1002/polb.24630

    Article  CAS  Google Scholar 

  • Kaur R, Kukkar D, Bhardwaj SK, Kim KH, Deep A (2018) Potential use of polymers and their complexes as media for storage and delivery of fragrances. J Control Release 285:8–95. https://doi.org/10.1016/j.jconrel.2018.07.008

    Article  CAS  Google Scholar 

  • Kfoury M, Hădărugă NG, Hădărugă DI, Fourmentin S (2016) Cyclodextrins as encapsulation material for flavors and aroma. In: Encapsulations. Nanotechnology in the agri-food industry, 1st edn, vol 2, chapter 4, pp. 127–192. ISBN: 978-0-12-804378-3

  • Kfoury M, Auezova L, Greige-Gerges H, Fourmentin S (2019) Encapsulation in cyclodextrins to widen the applications of essential oils. Environ Chem Lett 17:129–143. https://doi.org/10.1007/s10311-018-0783-y

    Article  CAS  Google Scholar 

  • Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98:1977–1996. https://doi.org/10.1021/cr970012b

    Article  CAS  Google Scholar 

  • Koizumi K, Sanbe H, Kubota Y, Terada Y, Takaha T (1999) Isolation and characterization of cyclic alpha-(1 → 4)-glucans having degrees of polymerization 9-31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 852:407–416

    Article  CAS  Google Scholar 

  • Komiyama M (1996) Cyclodextrins as enzyme models. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3. Pergamon Oxford, London, pp 401–422

    Google Scholar 

  • Kozlowski CA, Sliwa W (2010) Use of cyclodextrin polymers in separation of organic species. In: Polymer science and technology series. Nova Science Publishers, Inc., New York

  • Krysl S, Smolková-Keulemansová E (1985) Cyclodextrins and their utilization in chromatographic methods. Chemické Listy 79:919–942

    CAS  Google Scholar 

  • Kumar S, Rao R (2019) Analytical tools for cyclodextrin nanosponges in pharmaceutical field: a review. J Incl Phenom Macrocycl Chem 94:11–30. https://doi.org/10.1007/s10847-019-00903-z

    Article  CAS  Google Scholar 

  • Kumari P, Singh P, Singhal A, Alka (2020) Cyclodextrin-based nanostructured materials for sustainable water remediation applications. Environ Sci Pollut Res 27:32432–32448. https://doi.org/10.1007/s11356-020-09519-0

    Article  CAS  Google Scholar 

  • Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453:167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055

    Article  CAS  Google Scholar 

  • Lach JL, Chin TF (1964) Interaction of pharmaceuticals with Schardinger dextrins. III. J Pharm Sci 53:69–73

    Article  CAS  Google Scholar 

  • Lach JL, Cohen J (1963) Interaction of pharmaceuticals with Schardinger dextrins. II. J Pharm Sci 52:137–142

    Article  CAS  Google Scholar 

  • Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S (2012) Remediation technologies using cyclodextrins: an overview. Environ Chem Lett 10:225–237. https://doi.org/10.1007/s10311-011-0351-1

    Article  CAS  Google Scholar 

  • Lange F (1925) Verfahren zur gewinnung von polyamylosen. German Patent, Patentschrift n° 442963, I.G. Farbenindustrie Akt.-Ges. In Frankfurt

  • Larsen KL (2002) Large cyclodextrins. J Incl Phenom 43:1–13. https://doi.org/10.1023/A:1020494503684

    Article  CAS  Google Scholar 

  • Lau EV, Gan SY, Ng HK, Poh PE (2014) Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environ Pollut 184:640–649. https://doi.org/10.1016/j.envpol.2013.09.010

    Article  CAS  Google Scholar 

  • Lau MT, Manion J, Littleboy JB, Oyston L, Khuong TM, Wang QP, Nguyen DT, Hesselson D, Seymour J, Neely GG (2019) Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote. Nat Commun 10:1655. https://doi.org/10.1038/s41467-019-09681-1

    Article  CAS  Google Scholar 

  • Lay S, Ni XF, Yu HN, Shen SR (2016) State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review. J Sep Sci 39:2321–2331. https://doi.org/10.1002/jssc.201600003

    Article  CAS  Google Scholar 

  • Lepage ML, Schneider JP, Bodlenner A, Compain P (2015) Toward a molecular Lego approach for the diversity-oriented synthesis of cyclodextrin analogues designed as scaffolds for multivalent systems. J Org Chem 80:10719–10733. https://doi.org/10.1021/acs.joc.5b01938

    Article  CAS  Google Scholar 

  • Li J (2009) Cyclodextrin inclusion polymers forming hydrogels. In: Wenz G (ed) Inclusion polymers. Book series: advances in polymer science 222:79–112. https://doi.org/10.1007/12_2008_9

  • Li S, Purdy WC (1992) Cyclodextrins and their applications in analytical chemistry. Chem Rev 92:1457–1470

    Article  CAS  Google Scholar 

  • Lichtenthaler FW, Immel S (1996) Towards understanding formation and stability of cyclodextrin inclusion complexes: computation and visualization of their molecular lipophilicity patterns. Starch/Stärke 48:145–154

    Article  CAS  Google Scholar 

  • Lindner K, Saenger W (1978) β-cyclodextrine dodecahydrate: crowing of water molecules within a hydrophobic cavity. Angew Chem Int Ed 17:694–695

    Article  Google Scholar 

  • Liu B, Turley SD, Burns DK, Miller AM, Repa JJ, Dietschy JM (2009) Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc Natl Acad Sci USA 106:2377–2382. https://doi.org/10.1073/pnas.0810895106

    Article  Google Scholar 

  • Liu QM, Zhou Y, Lu J, Zhou YB (2020) Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review. Chemosphere 241:125043. https://doi.org/10.1016/j.chemosphere.2019.125043

    Article  CAS  Google Scholar 

  • Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications: historical perspectives. Int J Pharm 329:1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044

    Article  CAS  Google Scholar 

  • Loftsson T, Stefánsson E (2017) Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int J Pharm 531:413–423. https://doi.org/10.1016/j.ijpharm.2017.04.010

    Article  CAS  Google Scholar 

  • Loftsson T, Jarho P, Másson M, Järvinen T (2005) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2:335–351. https://doi.org/10.1517/17425247.2.1.335

    Article  CAS  Google Scholar 

  • Luda MP, Zanetti M (2019) Cyclodextrins and cyclodextrin derivatives as green char promoters in flame retardants formulations for polymeric materials. A review. Polymers 11:664. https://doi.org/10.3390/polym11040664

    Article  CAS  Google Scholar 

  • Lüttringhaus A, Cramer F, Prinzbach H, Henglein FM (1958) Cyclisationen von langkettigen dithiolen. Versuche zur darstellung sich umfassender ringe mit hilfe von einschlußverbindungen. Liebigs Ann Chem 613:185–198. https://doi.org/10.1002/jlac.19586130120

    Article  Google Scholar 

  • Macaev F, Boldescu V (2015) Cyclodextrins in asymmetric and stereospecific synthesis. Symmetry Basel 7:1699–1720. https://doi.org/10.3390/sym7041699

    Article  CAS  Google Scholar 

  • Madrid F, Ballesteros R, Lacorte S, Villaverde J, Morillo E (2019) Extraction of PAHS from an aged creosote-polluted soil by cyclodextrins and rhamnolipids. Side effects on removal and availability of potentially toxic elements. Sci Total Environ 635:384–392. https://doi.org/10.1016/j.scitotenv.2018.10.316

    Article  CAS  Google Scholar 

  • Maeda Y, Motoyama K, Nishiyama R, Higashi T, Onodera R, Hakamura H, Takeo T, Nakagata H, Yamada Y, Ishitsuka Y, Kondo Y, Irie T, Era T, Arima H (2019) In vivo efficacy and safety evaluation of lactosyl-β-cyclodextrin as a therapeutic agent for hepatomegaly in Niemann-pick type C disease. Nanomaterials 9:802. https://doi.org/10.3390/nano9050802

    Article  CAS  Google Scholar 

  • Mahmud ST, Wilson LD (2016) Synthesis and characterization of surface-modified mesoporous silica materials with beta-cyclodextrin. Cogent Chem 2:1132984. https://doi.org/10.1080/23312009.2015.1132984

    Article  CAS  Google Scholar 

  • Malanga M, Szemán J, Fenyvesi E, Puskas I, Csabai K, Gyemant G, Fenyvesi F, Szente L (2016) “Back to the future”: a new look at hydroxypropyl beta-cyclodextrins. J Pham Sci 105:2921–2931. https://doi.org/10.1016/j.xphs.2016.04.034

    Article  CAS  Google Scholar 

  • Malanga M, Seggio M, Kirejev V, Fraix A, Di Bari I, Fenyvesi É, Ericson MB, Sortino S (2019) A phototherapeutic fluorescent β-cyclodextrin branched polymer delivering nitric oxide. Biomater Sci 7:2272–2276. https://doi.org/10.1039/C9BM00395A

    Article  CAS  Google Scholar 

  • Matencio A, Navarro-Orcajada S, Garcia-Carmona F, Lopez-Nicolas JM (2020) Applications of cyclodextrins in food science. A review. Trends Food Sci Technol 104:132–143. https://doi.org/10.1016/j.tifs.2020.08.009

    Article  CAS  Google Scholar 

  • Mavridis IM, Yannakopoulou K (2015) Anionic cyclodextrins as versatile hosts for pharmaceutical nanotechnology: synthesis, drug delivery, enantioselectivity, contrast agents for MRI. Int J Pharm 492:275–290. https://doi.org/10.1016/j.ijpharm.2015.06.004

    Article  CAS  Google Scholar 

  • McClenahan WS, Tilden EB, Hudson CS (1942) A study of the products obtained from starch by the action of the amylase of Bacillus macerans. J Am Chem Soc 64:2139–2144

    Article  CAS  Google Scholar 

  • Melotti A, Mas C, Kuciak M, Lorente-Trigos A, Borges I, Ruiz i Altaba A (2014) The river blindness drug ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol Med 6:1263–1278. https://doi.org/10.15252/emmm.201404084

    Article  CAS  Google Scholar 

  • Menezes PD, Andrade TD, Frank LA, de Souza EPBSS, Trindade GDG, Trindade IAS, Serafini MR, Guterres SS, Araujo AAD (2019) Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 559:312–328. https://doi.org/10.1016/j.ijpharm.2019.01.041

    Article  CAS  Google Scholar 

  • Menges RA, Armstrong DW (1991) Chiral separations using native and functionalized cyclodextrin-bonded stationary phases in high-pressure liquid-chromatography. ACS Symp Ser 471:67–100

    Article  CAS  Google Scholar 

  • Miekeley A (1930) Über die fragliche existenz der sog. α-diamylose. Ber Dtsch Chem Ges 63:1957–1961

    Article  Google Scholar 

  • Miekeley A (1932) Bemerkung zür existenz des α-diamylose. Ber Dtsch Chem Ges 65:69

    Article  Google Scholar 

  • Miller KP, Wang L, Chen YP, Pellechia PJ, Benicewicz BC, Decho AW (2015) Engineering nanoparticles to silence bacterial communication. Frontiers Microbiol 6:189. https://doi.org/10.3389/fmicb.2015.00189

    Article  Google Scholar 

  • Mitchell CR, Armstrong DW (2004) Cyclodextrin-based chiral stationary phases for liquid chromatography: a twenty-year overview. In: Gübitz G, Schmid MG (eds) Chiral separations—methods and protocols. Methods in molecular biology, vol 243. Humana Press Inc., New Jersey, pp 61–112. ISBN: 1-58829-150-2

  • Miyazawa I, Ueda H, Nagase H, Endo T, Kobayashi S, Nagai T (1995) Physicochemical properties and inclusion complex formation of δ-cyclodextrin. Eur J Pharm Sci 3:153–162

    Article  CAS  Google Scholar 

  • Mocanu G, Vizitiu D, Carpov A (2001) Cyclodextrin polymers. J Bioact Compat Polym 16:315–342

    Article  CAS  Google Scholar 

  • Morillo E (2006) Application of cyclodextrins in agrochemistry. In: cyclodextrins and their complexes. In: Dodziuk H (ed) Chemistry, analytical methods, applications, chapter 16. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, pp 459–467

  • Morillo E, Lara-Moreno F, Villaverde J (2020) Soil bioremediation by cyclodextrins. A review. Int J Pharm 591:119943. https://doi.org/10.1016/j.ijpharm.2020.119943

    Article  CAS  Google Scholar 

  • Morin-Crini N, Fourmentin S, Crini G (eds) (2015) Cyclodextrines. Besançon: PUFC. 370 p. ISBN: 978-2-84867-520-6

  • Morin-Crini N, Fourmentin M, Fourmentin S, Torri G, Crini G (2018) Synthesis of silica materials containing cyclodextrin and their applications in wastewater treatment. Environ Chem Lett 16:1361–1375. https://doi.org/10.1007/s10311-018-00818-0

    Article  CAS  Google Scholar 

  • Morin-Crini N, Fourmentin S, Fenyvesi É, Lichtofuse E, Torri G, Fourmentin M, Crini G (2020) History of cyclodextrins. In: Crini G, Fourmentin S, Lichtfouse E (eds) The history of cyclodextrins, Chapter 1. Springer, pp 1–92. https://doi.org/10.1007/978-3-030-49308-1

  • Morohoshi T, Tokita K, Ito S, Saito Y, Maeda S, Kato K, Ikeda T (2013) Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins. J Biosci Bioeng 116:175–179. https://doi.org/10.1016/j.jbiosc.2013.01.022

    Article  CAS  Google Scholar 

  • Motoyama K, Onodera R, Tanaka N, Kameyama K, Higashi T, Kariya R, Okada S, Arima H (2015) Evaluation of antitumor effects of folate-conjugated methyl-β-cyclodextrin in melanoma. Biol Pharm Bull 38:374–379. https://doi.org/10.1248/bpb.b14-00531

    Article  CAS  Google Scholar 

  • Muankaew C, Loftsson T (2018) Cyclodextrin-based formulations: a non-invasive platform for targeted drug delivery. Basic Clin Pharm Toxicol 122:46–55. https://doi.org/10.1111/bcpt.12917

    Article  CAS  Google Scholar 

  • Müller S, Estour F, Kalakuntla RK, Le P, Romain LO, Worek F, Thiermann H, Reiter G (2013) New modified beta-cyclodextrin derivatives as detoxifying agents of chemicalwarfare agents (II). In vitro detoxification of cyclosarin (GF): general screening and toxicokineticaspects of OP scavengers. Toxicol Lett 216:206–212

    Article  Google Scholar 

  • Nepogodiev S, Stoddart FJ (1998) Cyclodextrin-based catenanes and rotaxanes. Chem Rev 98:1959–1976. https://doi.org/10.1021/cr970049w

    Article  CAS  Google Scholar 

  • Neva T, Mellet CO, Fernandez JMG, Benito JM (2019) Multiply-linked cyclodextrin-aromatic hybrids: caps, hinges and clips. J Carbohydr Chem. https://doi.org/10.1080/07328303.2019.1609020

    Article  Google Scholar 

  • Nociari MM, Lehmann GL, Perez Bay AE, Radu RA, Jiang Z, Goicochea S, Schreiner R, Warren JD, Shan J, de Beaumais SA, Ménand M, Sollogoub M, Maxfield FR, Rodriguez-Boulan E (2014) Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium. Proc Nat Acad Sci USA 111:E1402–E1408. https://doi.org/10.1073/pnas.1400530111

    Article  CAS  Google Scholar 

  • Norberg E, French D (1950) Studies on the Schardinger dextrins. III. Redistribution reactions of Macerans amylase. J Am Chem Soc 72:1202–1205. https://doi.org/10.1021/ja01159a036

    Article  CAS  Google Scholar 

  • Okano C, Nasuno E, Iimura K, Kato N (2016) Cyclodextrin-immobilized microspheres for uptake of the quorum-sensing signaling molecule N-acylhomoserine lactone. J Appl Polym Sci. https://doi.org/10.1002/app.43198

    Article  Google Scholar 

  • Oliveri V, Vecchio G (2016) Cyclodextrins as protective agents of protein aggregation: an overview. Chem Asian J 11:1648–1657. https://doi.org/10.1002/asia.201600259

    Article  CAS  Google Scholar 

  • Osaki M (2019) Functionalization of cyclodextrin derivatives to create supramolecular pharmaceutical materials. J Pharm Soc Jpn 139:165–173

    Article  CAS  Google Scholar 

  • Pawar S, Shende P (2019) A comprehensive patent review on beta-cyclodextrin cross-linked nanosponges for multiple applications. Recent Patents Nanotechnol. https://doi.org/10.2174/1872210513666190603083930

    Article  Google Scholar 

  • Perez-Anes A, Gargouri M, Laure W, Van Den Berghe H, Courcot E, Sobocinski J, Tabary N, Chai F, Blach JF, Addad A, Woisel P, Douroumis D, Martel B, Blanchemain N, Lyskawa J (2015) Bioinspired titanium drug eluting platforms based on a poly-beta-cyclodextrin-chitosan layer-by-layer self-assembly targeting infections. ACS Appl Mater Int 7:12882–12893. https://doi.org/10.1021/acsami.5b02402

    Article  CAS  Google Scholar 

  • Pitha J (1984) Pharmaceutical preparations containing cyclodextrin derivatives. US Patent No. 4277064, 23 February 1988, with priority from US Patent No. 4596795, 25 April 1984

  • Pitha J, Szente L, Szejtli J (1983) Molecular encapsulation of drugs by cyclodextrins and congeners. In: Bruck SD (ed) Controlled drug delivery, vol I. CRC Press, Boca Raton, pp 125–148

    Google Scholar 

  • Poór M, Kunsági-Máté S, Szente L, Matisz G, Secenji G, Czibuya Z, Kőszegi T (2015) Interaction of ochratoxin A with quaternary ammonium beta-cyclodextrin. Food Chem 172:143–149. https://doi.org/10.1016/j.foodchem.2014.09.034

    Article  CAS  Google Scholar 

  • Pringsheim H (1915) Neue ergebnisse der stärkechemie. Naturwissenschaften 3:95–99. https://doi.org/10.1007/BF01546143

    Article  CAS  Google Scholar 

  • Pringsheim H (1922) Problematisches aus der polysaccharide chemie. Angewe Chemie 35:345–349

    Article  CAS  Google Scholar 

  • Pringsheim H (1924) Über die konstitution der stärke, des glykogens und der flechtenstärke (Beiträge zur Chemie der Stärke, XII). Ber Dtsch Chem Ges 57:1581–1598. https://doi.org/10.1002/cber.19240570870

    Article  Google Scholar 

  • Pringsheim H (1926) Abbau und aufbau der polysaccharide. Ber Dtsch Chem Ges 59:3008–3018. https://doi.org/10.1002/cber.19260591205

    Article  Google Scholar 

  • Pringsheim H (1927) Über die zusammensetzung des holzgeistöls und acetonöls. Angew Chem 40:1387–1393

    Article  CAS  Google Scholar 

  • Pringsheim H (1928a) A comprehensive survey of starch chemistry. In: Walton RP (ed) Chemical Catalog Co. Inc., New York, p 35

  • Pringsheim H (1928b) Twenty-five years of biochemistry. Science 68:603–608

    Article  CAS  Google Scholar 

  • Pringsheim H (1931a) Dextrine: charakteristik, gewinnung und eigenschaften. In: Die polysaccharide. Verlag von Julius Springer, Berlin, chapter VII, pp 248–274

  • Pringsheim H (1931b) Ein umriβ der heutigen zuckerchemie. Angew Chem 44:677–682

    Article  CAS  Google Scholar 

  • Pringsheim H (1932) The dextrins: characteristics, sources, and properties. In: The chemistry of the monosaccharides and of the polysaccharides, vol 6. McGraw-Hill Book Company, Inc. New York, Cornell University, chapter XV, pp 271–295

  • Pringsheim H, Beiser A (1932) Diamylose und tetraamylose (Beiträge zur chemie der stärke, XXVII). Ber Dtsch Chem Ges 65:1870–1873. https://doi.org/10.1002/cber.19320651124

    Article  Google Scholar 

  • Pringsheim H, Dernikos D (1922) Weiteres über die polyamylosen (Beiträge zur Chemie der Stärke, VI). Ber Dtsch Chem Ges 55:1433–1445. https://doi.org/10.1002/cber.19220550534

    Article  Google Scholar 

  • Pringsheim H, Eissler F (1913) Über Schardingers krystallisierte dextrin (Beiträge zur chemie der stärke, II.). Ber Dtsch Chem Ges 46:2959–2974. https://doi.org/10.1002/cber.19130460370

    Article  Google Scholar 

  • Pringsheim H, Eissler F (1914) Über Schardingers krystallisierte dextrin (Beiträge zur chemie der stärke, III.). Ber Dtsch Chem Ges 47:2565–2572. https://doi.org/10.1002/cber.19140470331

    Article  CAS  Google Scholar 

  • Pringsheim H, Langhans A (1912) Über krystallisierte polysaccharides aus stärke. Ber Dtsch Chem Ges 45:2533–2546. https://doi.org/10.1002/cber.191204502156

    Article  Google Scholar 

  • Pringsheim H, Lichtenstein S (1916) On crystallized polysaccharides from glycogen. Ber Dtsch Chem Ges 49:364–369. https://doi.org/10.1002/cber.19160490141

    Article  CAS  Google Scholar 

  • Pringsheim H, Meyersohn P (1927) Über die dispergierung der polyamylosen (Beiträge zur Chemie der Stärke, XX). Ber Dtsch Chem Ges 60:1709–1716. https://doi.org/10.1002/cber.19270600743

    Article  Google Scholar 

  • Pringsheim H, Müller KO (1922) Physiology of the polyamyloses. Hoppe-Seiler’s Z Physiol Chem 118:236–240

    CAS  Google Scholar 

  • Pringsheim H, Schapiro E (1926) Über den fermentativen abbau der stärke durch biolase. (Beiträge zur chemie der stärke, XVI). Ber Dtsch Chem Ges 59:996–1000. https://doi.org/10.1002/cber.19260590524

    Article  Google Scholar 

  • Pringsheim H, Wolfsohn K (1924) Über den verschiedenen aufbau der beiden stärke-bestandteile (Beiträge zur Chemie der Stärke, X). Ber Dtsch Chem Ges 57:887–891. https://doi.org/10.1002/cber.19240570537

    Article  Google Scholar 

  • Pringsheim H, Wiener A, Weidinger A (1930) Über neue polyamylosen. I. (Beiträge zur chemie der stärke, XXIV). Ber Dtsch Chem Ges 63:2628–2636. https://doi.org/10.1002/cber.19300630943

    Article  Google Scholar 

  • Pringsheim H, Weidinger A, Sallentien H (1931a) Diamylose und tetramylose; triamylose und hexaamylose (Beiträge zur Chemie der Stärke, XXV). Ber Dtsch Chem Ges 64:2117–2125. https://doi.org/10.1002/cber.19310640841

    Article  Google Scholar 

  • Pringsheim H, Weidinger A, Sallentien H (1931b) Über neue polyamylosen, II. (Beiträge zur Chemie der Stärke, XXVI). Ber Dtsch Chem Ges 64:2125–2130. https://doi.org/10.1002/cber.19310640842

    Article  Google Scholar 

  • Pulley AO, French D (1961) Studies on the Schardinger dextrins. 11. Isolation of new Schardinger dextrins. Biochem Biophys Res Commun 5:11–15. https://doi.org/10.1016/0006-291X(61)90071-7

    Article  CAS  Google Scholar 

  • Puskás I, Varga E, Tuza K, Szemán J, Fenyvesi É, Sohajda T, Szente L (2015) Sulfobutylether-cyclodextrins: structure, degree of substitution and functional performance. In: Ramirez FG (ed) Cyclodextrins. Nova Science Publishers, Inc., chapter 10, pp 293–320. ISBN: 978-1-63482-788-1

  • Qi QS, She XY, Endo T, Zimmermann W (2004) Effect of the reaction temperature on the transglycosylation reactions catalyzed by the cyclodextrin glucanotransférase from Bacillus macerans for the synthesis of large-ring cyclodextrins. Tetrahedron 60:799–806

    Article  CAS  Google Scholar 

  • Rajkumar T, Kukkar D, Kim KH, Sohn JR, Deep A (2019) Cyclodextrin-metal-organic framework (CD-MOF): from synthesis to for applications. J Ind Eng Chem 72:50–66. https://doi.org/10.1016/j.jiec.2018.12.048

    Article  CAS  Google Scholar 

  • Robyt J, French D (1964) Purification and action pattern of an amylase from Bacillus polymyxa. Arch Biochem Biophys 104:338–345. https://doi.org/10.1016/S0003-9861(64)80024-2

    Article  CAS  Google Scholar 

  • Rundle RE, French D (1943) The configuration of starch and the starch-iodine complex. II. Optical properties of crystalline starch fractions. J Am Chem Soc 65:558–561. https://doi.org/10.1021/ja01244a018

    Article  CAS  Google Scholar 

  • Ryzhakov A, Thi TD, Stappaerts J, Bertoletti L, Kimpe K, Couto ARS, Saokham P, Van den Mooter G, Augustijns P, Somsen GW, Kurkov S, Inghelbrecht S, Arien A, Jimidar MI, Schrijnemakers K, Loftsson T (2016) Self-assembly of cyclodextrins and their complexes in aqueous solutions. J Pharm Sci 105:2556–2569. https://doi.org/10.1016/j.xphs.2016.01.019

    Article  CAS  Google Scholar 

  • Saenger W (1980) Cyclodextrin inclusion-compounds in research and industry. Angew Chem Int Ed 19:344–362. https://doi.org/10.1002/anie.198003441

    Article  Google Scholar 

  • Saenger W, Noltemeyer M, Manor PC, Hingerty B, Klar B (1976) “Induced fit” type complex formation of the model enzyme α-cyclodextrin. Bioorg Chem 5:187–195. https://doi.org/10.1016/0045-2068(76)90007-9

    Article  CAS  Google Scholar 

  • Samec M, Blinc M (1941) Die neuere entwicklung der kolloidchemie der stärke. T. Steinkopff, Dresden and Leipzig, p 543

    Google Scholar 

  • Saokham P, Loftsson T (2017) Gamma-cyclodextrin. Int J Pharm 516:278–292. https://doi.org/10.1016/j.ijpharm.2016.10.062

    Article  CAS  Google Scholar 

  • Schardinger F (1903a) Über thermophile bakterien aus verschiedenen speisen und milch, sowie über einige umsetzungsprodukte derselben in kohlenhydrathaltigen nährlösungen, darunter krystallisierte polysaccharide (dextrine) aus stärke. Zeitschrrift für Untersuchuing von Nahrungs- und Genussmittel 6:865–880

    Article  CAS  Google Scholar 

  • Schardinger F (1903b) Ueber die Zulässigkeit des warmhaltens von zum genuβ bestimmten nahrungsmitteln mittelst wärme speichernder apparate, sog. thermophore. Wien Klin Wochenschr 16:468–474

    Google Scholar 

  • Schardinger F (1904) Mitteilung aus der staatlichen untersuchungsanstalt für lebensmittel in Wien Azetorgärung. Wien Klin Wochenschr 17:207–209

    Google Scholar 

  • Schardinger F (1905) Bacillus macerans, ein aceton bildender rottebacillus. Centralblatt für Bakteriologie Parasitenkunde und Infektionskrankheiten 14:772–781

    CAS  Google Scholar 

  • Schardinger F (1907) Zur biochemie des Bacillus macerans. Centralblatt für Bakteriologie Parasitenkunde und Infektionskrankheiten 19:161–163

    Google Scholar 

  • Schardinger F (1909) Ueber die bildung kristallisierter fehlingsche lösung nicht reduzierender körper (polysaccharide) aus stärke durch mikrobielle tätigkeit. Centralblatt für Bakteriologie und Parasitenkunde 22:98–103

    CAS  Google Scholar 

  • Schardinger F (1911) Bildung kristallisierter polysaccharide (dextrine) aus stärkekleister durch mikrobien. Centrablatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten 29:188–197

    Google Scholar 

  • Schlenk H, Sand DM (1961) The association of α- and β-cyclodextrins with organic acids. J Am Chem Soc 83:2312–2320. https://doi.org/10.1021/ja01471a022

    Article  CAS  Google Scholar 

  • Schlenk H, Sand DM, Tillotson JA (1955) Stabilization of autoxidizable materials by means of inclusion. J Am Chem Soc 77:3587–3590. https://doi.org/10.1021/ja01618a049

    Article  CAS  Google Scholar 

  • Schneider HJ (2012) Applications of supramolecular chemistry. CRC Press, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Schneider HJ, Yatsimirsky AK (2000) Principles and methods in supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  • Schneiderman E, Stalcup AM (2000) Cyclodextrins: a versatile tool in separation science. J Chromatogr B 745:83–102. https://doi.org/10.1016/S0378-4347(00)00057-8

    Article  CAS  Google Scholar 

  • Scriba GKE (2012) Chiral recognition mechanisms in analytical separation sciences. Chromatographia 75:815–838. https://doi.org/10.1007/s10337-012-2261-1

    Article  CAS  Google Scholar 

  • Sébille B (1987) Cyclodextrin derivatives. In: Duchêne D (ed) cyclodextrins and their industrial uses. Edition de Santé, Paris, pp 351–393

    Google Scholar 

  • Sharma N, Baldi A (2016) Exploring versatile applications of cyclodextrins: an overview. Drug Deliv 23:739–757. https://doi.org/10.3109/10717544.2014.938839

    Article  CAS  Google Scholar 

  • Shende P, Trotta F (2019) Diversity of beta-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm 565:333–350. https://doi.org/10.1016/j.ijpharm.2019.05.015

    Article  CAS  Google Scholar 

  • Sicard PJ, Saniez MH (1987) Biosynthesis of cycloglycosyltransferase and obtention of its enzymatic reaction products. In: Duchêne D (ed) Cyclodextrins and their industrial uses. Paris: Éditions de Santé, chapter 2, pp 77–103

  • Silva A, Duarte A, Sousa S, Ramos A, Domingues FC (2016) Characterization and antimicrobial activity of cellulose derivatives films incorporated with a resveratrol inclusion complex. WT Food Sci Technol 73:481–489. https://doi.org/10.1016/j.lwt.2016.06.043

    Article  CAS  Google Scholar 

  • Simoes SMN, Veiga F, Torres-Labandeira JJ, Ribeiro ACF, Concheiro A, Alvarez-Lorenzo C (2014) Syringeable self-assembled cyclodextrin gels for drug delivery. Curr Top Med Chem 14:494–509. https://doi.org/10.2174/1568026613666131219124308

    Article  CAS  Google Scholar 

  • Singh MK, Varun VK, Behera BK (2011) Cosmetotextiles: state of art. Fibres Textiles Eastern Europe 19:27–33

    CAS  Google Scholar 

  • Smolková-Keulemansová E (1982) Cyclodextrins as stationary phases in chromatography. J Chromatogr 251:17–34

    Article  Google Scholar 

  • Smolková-Keulemansová E, Krysl S (1980) Inclusion compounds in chromatography. J Chromatogr 184:347–361. https://doi.org/10.1016/S0021-9673(00)89005-6

    Article  Google Scholar 

  • Sonnendecker C, Zimmermann W (2019a) Domain shuffling of cyclodextrin glucanotransferases for tailored product specificity and thermal stability. FEBS Open Bio 9:384–395. https://doi.org/10.1002/2211-5463.12588

    Article  CAS  Google Scholar 

  • Sonnendecker C, Zimmermann W (2019b) Change of the product specificity of a cyclodextrin glucanotransferase by semi-rational mutagenesis to synthesize large-ring cyclodextrins. Catalyts 9:242. https://doi.org/10.3390/catal9030242

    Article  CAS  Google Scholar 

  • Sonnendecker C, Melzer S, Zimmermann W (2018) Engineered cyclodextrin glucanotransferases from Bacillus sp. G-825-6 produce large-ring cyclodextrins with high specificity. MicrobiologyOpen. https://doi.org/10.1002/mbo3.757

    Article  Google Scholar 

  • Sonnendecker C, Thürmann S, Przybylski C, Zitmann FD, Heinke N, Krauke Y, Monks K, Robitzki Belder D, Zimmermann W (2019) Large-ring cyclodextrins as chiral selectors for enantiomeric pharmaceuticals. Angew Chem Int Ed 58:6411–6414. https://doi.org/10.1002/anie.201900911

    Article  CAS  Google Scholar 

  • Stella VJ, Rajewski RA (1992) Derivatives of cyclodextrin exhibiting enhanced aqueous solubility and pharmaceutical uses thereof US Patent No. 5,134,127

  • Sybilska D, Smolková-Keulemansová E (1984) Application of inclusion compounds in chromatography. In: Inclusion compounds. Academic Press, London, vol 3, pp 173–243

  • Szejtli J (1977) Some application possibilities of cyclodextrins in pharmaceutical industries. Starch/Stärke 29:26–33. https://doi.org/10.1002/star.19770290107

    Article  CAS  Google Scholar 

  • Szejtli J (1978) Neue untersuchungsmethoden in der cyclodextrinchemie. Starch/Stärke 30:427–431. https://doi.org/10.1002/star.19780301207

    Article  CAS  Google Scholar 

  • Szejtli J (1982a) Cyclodextrins and their inclusion complexes. Akadémiai Kiadó, Budapest. ISBN 963-05-2850-9

    Google Scholar 

  • Szejtli J (1982b) Cyclodextrins in food, cosmetics and toiletries. Starch/Stärke 34:379–385. https://doi.org/10.1002/star.19820341106

    Article  CAS  Google Scholar 

  • Szejtli J (1983) Dimethyl-β-cyclodextrin as parenteral drug carrier. J Incl Phenom 1:135–150

    Article  CAS  Google Scholar 

  • Szejtli J (1984) Industrial applications of cyclodextrins. In: Atwood JL, Davies JED, MacNicol DD (eds) Inclusion compounds, vol 3. Academic Press, London, pp 331–390

    Google Scholar 

  • Szejtli J (1985) Cyclodextrins: a new group of industrial basic materials. Nahrung Food 29:911–924

    Article  CAS  Google Scholar 

  • Szejtli J (1988) Cyclodextrin technology. Kluwer Academic Publishers, Dordrecht, p 450. ISBN: 90-277-2314-1

  • Szejtli J (1995) Selectivity/structure correlation in cyclodextrin chemistry. Supramol Chem 6:217–223. https://doi.org/10.1080/10610279508032537

    Article  CAS  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753

    Article  CAS  Google Scholar 

  • Szejtli J (2002) The role of cyclodextrins in chiral selective chromatography. Trends Anal Chem 21:379–388

    Article  Google Scholar 

  • Szejtli J (2003) Cyclodextrins in the textile industry. Starch/Stärke 55:191–196

    Article  CAS  Google Scholar 

  • Szejtli J (2004) Past, present and future of cyclodextrin research. Pure Appl Chem 76:1825–1845. https://doi.org/10.1351/pac200476101825

    Article  CAS  Google Scholar 

  • Szejtli J, Szente L, Bánky-Előd E (1979) Molecular encapsulation of volatile, easily oxidizable labile flavour substances by cyclodextrins. Acta Chim Acad Sci Hung 101:27–46

    CAS  Google Scholar 

  • Szejtli J, Gerloczy A, Fonagy A (1980a) Intestinal absorption of 14C-labelled β-cyclodextrin in rats. Arzeim Forsch 30:808–810

    CAS  Google Scholar 

  • Szejtli J, Zsadon B, Fenyvesi É, Otta K, Tudos F (1980b) Hungarian Patent 181733, U.S. Patent 4,357,468 (1982)

  • Szente L, Fenyvesi É (2018) Cyclodextrin-enabled polymer composites for packaging. Molecules 23:1556. https://doi.org/10.3390/molecules23071556

    Article  CAS  Google Scholar 

  • Szente L, Strattan CE (1991) Hydroxypropyl-β-cyclodextrins, preparation and physicochemical properties. In: Duchêne D (ed) New trends in cyclodextrins and derivatives. Editions de Santé, Paris, chapter 2, pp 55–96

  • Szente L, Szejtli J (1996) Cyclodextrins in pesticides. In: comprehensive supramolecular chemistry. In: Szejtli J, Osa T (eds), Pergamon Oxford, London, vol 3, pp 503–514

  • Szente L, Szemán J (2013) Cyclodextrins in analytical chemistry: host-guest type molecular recognition. Anal Chem 85:8024–8030. https://doi.org/10.1021/ac400639y

    Article  CAS  Google Scholar 

  • Taira H, Nagase H, Endo T, Ueda H (2006) Isolation, purification and characterization of large-ring cyclodextrins (CD36 ~ CD39). J Inclus Phenom Macrocycl Chem 56:23–28

    Article  CAS  Google Scholar 

  • Taka AL, Pillay K, Mbianda XY (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohydr Polym 159:94–107. https://doi.org/10.1016/j.carbpol.2016.12.027

    Article  CAS  Google Scholar 

  • Terada Y, Yanase M, Takata H, Takaha T, Okada S (1997) Cyclodextrins are not the major cyclic alpha-(1 → 4)-glucans produced by the initial action of cyclodextrin glucanotransferase on amylase. J Biol Chem 272:15729–15733

    Article  CAS  Google Scholar 

  • Thoma JA, French D (1958) Studies on the Schardinger dextrins. X. The interaction of cyclohexaamylose, iodine and iodide. Part I. Spectrophotometric studies. J Am Chem Soc 80:6142–6146. https://doi.org/10.1021/ja01555a060

    Article  CAS  Google Scholar 

  • Thoma JA, French D (1959) The dissociation constant for the cyclohexaamylose-iodine complex. J Phys Chem 62:1603. https://doi.org/10.1021/j150570a041

    Article  Google Scholar 

  • Thoma JA, French D (1960) The starch iodine iodide interaction. 1. Spectrophotometric investigations. J Am Chem Soc 82:4144–4147. https://doi.org/10.1021/ja01501a004

    Article  CAS  Google Scholar 

  • Thoma JA, French D (1961) The starch iodine iodide interaction. 2. Potentiometric investigations. J Phys Chem 65:1825–1828. https://doi.org/10.1021/j100827a032

    Article  CAS  Google Scholar 

  • Thoma JA, Stewart L (1965) Cycloamyloses. In: Starch, chemistry and technology, volume 1: fundamental aspects. In: Whistler RL, Paschall EF (eds) Academic Press, New York, chapter IX, pp 209–249

  • Thoma JA, Wright HB, French D (1959) Partition chromatography of homologous saccharides on cellulose columns. Archiv Biochem Biophys 85:452–460. https://doi.org/10.1016/0003-9861(59)90510-7

    Article  CAS  Google Scholar 

  • Tian BR, Xiao D, Hei TT, Ping R, Hua SY, Liu JY (2020) The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: a review. Polym Int 69:597–603. https://doi.org/10.1002/pi.5992

    Article  CAS  Google Scholar 

  • Tilden EB, Hudson CS (1939) Conversion of starch to crystalline dextrins by the action of a new type of amylase separated from cultures of Aerobacillus macerans. J Am Chem Soc 61:2900–2902

    Article  CAS  Google Scholar 

  • Tilden EB, Hudson CS (1942) Preparation and properties of the amylases produced by Bacillus macerans and Bacillus polymyxa. J Bacteriol 43:527–544

    Article  CAS  Google Scholar 

  • Tilden EB, Adams M, Hudson CS (1942) Purification of the amylase of Bacillus macerans. J Am Chem Soc 64:1432–1433

    Article  CAS  Google Scholar 

  • Topuz F, Uyar T (2019) Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics 11:1–35. https://doi.org/10.3390/pharmaceutics11010006

    Article  CAS  Google Scholar 

  • Uekama K, Hirayama F (1978) Inclusion complexation of prostaglandin F2α with α- and β-cyclodextrins in aqueous solution. Chem Pharm Bull 26:1195–1200

    Article  CAS  Google Scholar 

  • Uekama K, Otagiri M (1987) Cyclodextrins in drug carrier systems. Critical Rev Ther Drug Carrier Syst 3:1–40

    CAS  Google Scholar 

  • Uekama K, Fujise A, Hirayama F, Otagiri M, Inaba K (1984) Improvement of dissolution characteristics and chemical stability of prostaglandins E1 by γ-cyclodextrin complexation. Chem Pharm Bull 32:275–279

    Article  CAS  Google Scholar 

  • Ulmann M (1932) The molecular size of the alpha-dextrin of F Schardinger. Biochem Z 251:458–477

    CAS  Google Scholar 

  • Ulmann M, Trogus M, Hess K (1932) Zur kenntnis des α-dextrins von F. Schardinger. Ber Dtsch Chem Ges 65:682–686

    Article  Google Scholar 

  • Valente AJM, Söderman O (2014) The formation of host-guest complexes between surfactants and cyclodextrins. Adv Colloid Int 205:156–176. https://doi.org/10.1016/j.cis.2013.08.001

    Article  CAS  Google Scholar 

  • Van de Manakker F, Vermonden T, Van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175. https://doi.org/10.1021/bm901065f

    Article  CAS  Google Scholar 

  • van Etten RL, Sebastian JF, Clowes GA, Bender ML (1967a) Acceleration of phenyl ester cleavage by cycloamyloses: a model for enzymatic specificity. J Am Chem Soc 89:3242–3253

    Article  Google Scholar 

  • van Etten RL, Clowes GA, Sebastian JF, Bender ML (1967b) The mechanism of the cycloamylose-accelerated cleavage of phenyl esters. J Am Chem Soc 89:3253–3262

    Article  Google Scholar 

  • Vaution C, Hutin M, Glomot F, Duchêne D (1987) The use of cyclodextrins in various industries. In: Duchêne D (ed) Cyclodextrins and their industrial uses. Éditions de Santé, Paris, chapter 8, pp 299–350

  • Vermet G, Degoutin S, Chai F, Maton M, Danjou PE, Martel B, Blanchemain N (2017) Cyclodextrin modified PLLA parietal reinforcement implant with prolonged antibacterial activity. Acta Biomater 53:222–232. https://doi.org/10.1016/j.actbio.2017.02.017

    Article  CAS  Google Scholar 

  • Vetter W, Bester K (2006) Gas chromatographic enantioseparation of chiral pollutants—techniques and results. In: Busch KW and Busch MA (eds) Chiral separation, chapter 6, . Elsevier, Amsterdam, pp 131–228

  • Viernstein H, Wolschann P (2020) Cyclodextrin inclusion complexation and pharmaceutical applications. Scienceasia 46:254–262. https://doi.org/10.2306/scienceasia1513-1874.2020.048

    Article  CAS  Google Scholar 

  • Villalonga R, Cao R, Fragoso A (2007) Supramolecular chemistry of cyclodextrin in enzyme technology. Chem Rev 107:3088–3116. https://doi.org/10.1021/cr050253g

    Article  CAS  Google Scholar 

  • Villiers A (1891a) Sur la transformation de la fécule en dextrine par le ferment butyrique. Chimie Organique—Compte Rendus des Séances de l’Académie des Sciences (France) Février, CXII, pp. 435-437

  • Villiers A (1891b) Sur la transformation de la fécule en dextrine par le ferment butyrique. Bulletin de la Société Chimique de Paris. 1er semestre, 3ème série, tome V, volume 45, pp 468–470

  • Villiers A (1891c) Sur la fermentation de la fécule par l’action du ferment butyrique. Chimie Organique—Compte Rendus des Séances de l’Académie des Sciences (France) Juin, CXII, pp 536–538

  • Villiers A (1891d) Sur la fermentation de la fécule par l’action du ferment butyrique. Bulletin de la Société Chimique de Paris. 1er semestre, 3ème série, tome V, vol 46, pp 470–472

  • Voncina, B (2011) Application of cyclodextrins in textile dyeing. In: Hauser P (ed) Textile dyeing. InTech, Tijeka: Croatia, chapter 17, pp 373–392. ISBN: 978-953-307-565-5

  • Ward TJ, Armstrong DW (1986) Improved cyclodextrin chiral phases—a comparison and review. J Liq Chromatogr 9:407–423. https://doi.org/10.1080/01483918608076644

    Article  CAS  Google Scholar 

  • Ward TJ, Armstrong DW (1988) Cyclodextrin-stationary phases. In: Zief M and Crane LJ (eds) Chromatographic chiral separations. Marcel Dekker Inc., New York, chapter, 5, pp 131–163

  • Wenz G (1994) Cyclodextrins as building blocks for supramolecular structures and functional units. Angew Chem Int Ed 33:803–822

    Article  Google Scholar 

  • Wenz G, Han BH, Müller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 106:782–817. https://doi.org/10.1021/cr970027+

    Article  CAS  Google Scholar 

  • West C (2014) Enantioselective separations with supercritical fluids—review. Curr Anal Chem 10:99–120. https://doi.org/10.2174/1573411011410010009

    Article  CAS  Google Scholar 

  • Whelan WJ, Manners DJ, Rosenfeld E, Gottschalk A, French D, Bell DJ, Courtois JE, Hasside WZ (1960) Determination of starch structure by enzymes—Discussion. Bull Soc Chim Biol 42:1690–1700

    Google Scholar 

  • Wilson EJ, Schoch TJ, Hudson CS (1943) The action of macerans amylase on the fractions from starch. J Am Chem Soc 65:1380–1383

    Article  CAS  Google Scholar 

  • Wood DJ, Hrsuka FE, Saenger W (1977) 1H NMR study of the inclusion of aromatic molecules in α-cyclodextrin. J Am Chem Soc 99:1735–1740

    Article  CAS  Google Scholar 

  • Wu ZL, Song N, Menz R, Pingali B, Yang YW, Zheng YB (2015) Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare. Nanomedicine 10:1493–1514. https://doi.org/10.2217/NNM.15.1

    Article  CAS  Google Scholar 

  • Xiao Y, Ng SC, Tan TTY, Wang Y (2012) Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatogr A 1269:52–68. https://doi.org/10.1016/j.chroma.2012.08.049

    Article  CAS  Google Scholar 

  • Xu J, Wu L, Guo T, Zhang G, Wang C, Li H, Li X, Singh V, Chen W, Gref R, Zhang J (2019) A “ship-in-a-bottle” strategy to create folic acid nanoclusters inside the nanocages of γ-cyclodextrin metal-organic frameworks. Int J Pharm 556:89–96. https://doi.org/10.1016/j.ijpharm.2018.11.074

    Article  CAS  Google Scholar 

  • Yang JS, Yang L (2013) Preparation and application of cyclodextrin immobilized polysaccharides. J Mat Chem B 1:909–918. https://doi.org/10.1039/c2tb00107a

    Article  CAS  Google Scholar 

  • Yamagiwa T, Kawaguchi AT, Saito T, Inoue S, Morita S, Watanabe K, Kitagishi H, Koji K, Inokuchi S (2014) Supramolecular ferric porphyrins and a cyclodextrin dimer as antidotes for cyanide poisoning. Hum Exp Toxicol. 33:360–8. https://doi.org/10.1177/0960327113499041

    Article  CAS  Google Scholar 

  • Yao XK, Huang P, Nie ZH (2019) Cyclodextrin-based polymer materials: from controlled synthesis to applications. Prog Polym Sci 93:1–35. https://doi.org/10.1016/j.progpolymsci.2019.03.004

    Article  CAS  Google Scholar 

  • Yokoo M, Kubota Y, Motoyama K, Higashi T, Taniyoshi M, Tokommaru H, Nishiyama R, Tabe Y, Mochinaga S, Sato A, Sueoka-Aragane N, Sueoka E, Arima H, Irie T, Kimura S (2015) 2-Hydroxypropyl-β-cyclodextrin acts as a novel anticancer agent. PLoS ONE 10:e0141946. https://doi.org/10.1371/journal.pone.0141946

    Article  CAS  Google Scholar 

  • Yuan Z, Zhang L (2016) Photoinduced controlled-release drug delivery systems for applications in nanomedicine. Curr Org Chem 20:1768–1785. https://doi.org/10.2174/1385272820666160112001944

    Article  CAS  Google Scholar 

  • Yusoff SNM, Kamari A, Aljafree NFA (2016) A review of materials used as carrier agents in pesticide formulations. Int J Environ Sci Technol 13:2977–2994. https://doi.org/10.1007/s13762-016-1096-y

    Article  Google Scholar 

  • Zarzycki PK, Fenert BE, Głód BK (2016) Cyclodextrins-based nanocomplexes for encapsulation of bioactive compounds in food, cosmetics, and pharmaceutical products: principles of supramolecular complexes formation, their influence on the antioxidative properties of target chemicals, and recent advances in selected industrial applications. In: Grumezescu A (ed) Encapsulations. Nanotechnology in the agri-food industry, chapter 17, pp 717–767. ISBN: 978-0-12-804378-3

  • Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233. https://doi.org/10.1016/j.addr.2013.05.001

    Article  CAS  Google Scholar 

  • Zhang GQ, He LQ, Yuan MX, Li H, Chang T, Qin SJ (2018) Clean and green procedure for the synthesis of biodiesel from the esterification of free fatty acids and alcohol catalyzed by 6-O-(sulfobutyl)-cyclodextrin. Russ J Appl Chem 91:1123–1128. https://doi.org/10.1134/S1070427218070091

    Article  CAS  Google Scholar 

  • Zhang DJ, Lv P, Zhou C, Zhao YL, Liao XL, Yang B (2019a) Cyclodextrin-based delivery systems for cancer treatment. Mat Sci Eng C Mater Biol Appl 96:872–886. https://doi.org/10.1016/j.msec.2018.11.031

    Article  CAS  Google Scholar 

  • Zhang YM, Xu QY, Liu Y (2019b) Molecular recognition and biological application of modified cyclodextrins. Sci China Chem 62:549–560. https://doi.org/10.1007/s11426-018-9405-3

    Article  CAS  Google Scholar 

  • Zhang YM, Liu YH, Liu Y (2020) Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functions. Adv Mater 32:1806158. https://doi.org/10.1002/adma.201806158

    Article  CAS  Google Scholar 

  • Zimmer S, Grebe A, Bakke SS, Bode N, Halvorsen B, Ulas T, Skjelland M, De Nardo D, Labzin LI, Kerksiek A, Hempel C, Heneka MT, Hawxhurst V, Fitzgerald ML, Trebicka J, Bjorkhem I, Gustafsson JA, Westerterp M, Tall AR, Wright SD, Espevik T, Schultze JL, Nickenig G, Lutjohann D, Latz E (2016) Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aad6100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Morin-Crini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morin-Crini, N., Fourmentin, S., Fenyvesi, É. et al. 130 years of cyclodextrin discovery for health, food, agriculture, and the industry: a review. Environ Chem Lett 19, 2581–2617 (2021). https://doi.org/10.1007/s10311-020-01156-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-01156-w

Keywords

Navigation