Skip to main content
Log in

Cyclodextrin-based delivery systems for dietary pharmaceuticals

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The food industry is increasingly seeking innovative solutions for enhancing the bioavailability and clinical efficacy of phytochemicals. In this regard, cyclodextrins have gained widespread attention as functional excipients. Numerous studies have demonstrated that cyclodextrin inclusion complexes enhance the apparent water solubility, physical chemical stability, and improve the bioavailability of dietary phytochemicals. Recently, the dual-encapsulation approach has been developed, which involves the complexation of dietary molecules with cyclodextrins, followed by encapsulation into nanomaterials such as liposomes, nanoparticles and conjugates. Here, we review the current applications of natural and chemically modified cyclodextrins for the delivery of dietary phytochemicals. The main emphasis is given on inclusion complexes for enhancing the solubility, bioavailability and efficacy of dietary phytochemicals. We also discuss dual-encapsulation-based approaches developed for improved efficacy of dietary phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu-Dahab R, Odeh F, Ismail S, Azzam H, Al Bawab A (2013) Preparation, characterization and antiproliferative activity of thymoquinone-β-cyclodextrin self assembling nanoparticles. Die Pharmazie Int J Pharm Sci 68(12):939–944

    CAS  Google Scholar 

  • Alarcon De La Lastra C, Villegas I (2005) Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res 49(5):405–430

    Article  CAS  Google Scholar 

  • Al-Rawashdeh NA, Al-Sadeh KS, Al-Bitar M-B (2010) Physicochemical study on microencapsulation of hydroxypropyl-β-cyclodextrin in dermal preparations. Drug Dev Ind Pharm 36(6):688–697

    Article  CAS  Google Scholar 

  • Aqil F, Munagala R, Jeyabalan J, Vadhanam MV (2013) Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett 334(1):133–141

    Article  CAS  Google Scholar 

  • Arora D, Jaglan S (2016) Nanocarriers based delivery of nutraceuticals for cancer prevention and treatment: a review of recent research developments. Trends Food Sci Technol 54:114–126

    Article  CAS  Google Scholar 

  • Arora D, Jaglan S (2017) Therapeutic applications of resveratrol nanoformulations. Environ Chem Lett 16:35–41

    Article  CAS  Google Scholar 

  • Arora D, Saneja A, Jaglan S (2018) Cyclodextrin-based carriers for delivery of dietary phytochemicals. In: Fourmentin S et al. (ed) Cyclodextrin applications in medicine, food, environment and liquid crystals, pp 1–17. https://doi.org/10.1007/978-3-319-76162-6_1

  • Ashwaq AAS, Rasedee A, Abdul AB, Taufiq-Yap YH, Al-Qubaisi MS, Eid EE (2017) Characterization, drug release profile and cytotoxicity of dentatin-hydroxypropyl-β-cyclodextrin complex. J Incl Phenom Macrocycl Chem 87:167–178

    Article  CAS  Google Scholar 

  • Astray G, Gonzalez-Barreiro C, Mejuto J, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23(7):1631–1640

    Article  CAS  Google Scholar 

  • Avallone R, Zanoli P, Puia G, Kleinschnitz M, Schreier P, Baraldi M (2000) Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol 59(11):1387–1394

    Article  CAS  Google Scholar 

  • Baek J-S, Cho C-W (2017) A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells. Oncotarget 8(18):30369

    Article  Google Scholar 

  • Borghetti GS, Lula IS, Sinisterra RD, Bassani VL (2009) Quercetin/β-cyclodextrin solid complexes prepared in aqueous solution followed by spray-drying or by physical mixture. AAPS PharmSciTech 10(1):235–242

    Article  CAS  Google Scholar 

  • Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59(7):645–666

    Article  CAS  Google Scholar 

  • Challa R, Ahuja A, Ali J, Khar R (2005) Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6(2):E329–E357

    Article  Google Scholar 

  • Chen J, Lu W-L, Gu W, Lu S-S, Chen Z-P, Cai B-C, Yang X-X (2014) Drug-in-cyclodextrin-in-liposomes: a promising delivery system for hydrophobic drugs. Expert Opin Drug Deliv 11(4):565–577

    Article  CAS  Google Scholar 

  • Cravotto G, Binello A, Baranelli E, Carraro P, Trotta F (2006) Cyclodextrins as food additives and in food processing. Curr Nutr Food Sci 2(4):343–350

    Article  CAS  Google Scholar 

  • de Oliveira MG, Guimarães AG, Araújo Adriano A, Quintans Jullyana S, Santos MR, Quintans-Júnior LJ (2015) Cyclodextrins: improving the therapeutic response of analgesic drugs: a patent review. Expert Opin Ther Pat 25(8):897–907

    Article  CAS  Google Scholar 

  • di Cagno MP (2016) The potential of cyclodextrins as novel active pharmaceutical ingredients: a short overview. Molecules 22(1):1

    Article  CAS  Google Scholar 

  • Duarte A, Martinho A, Luís Â, Figueiras A, Oleastro M, Domingues FC, Silva F (2015) Resveratrol encapsulation with methyl-β-cyclodextrin for antibacterial and antioxidant delivery applications. LWT Food Sci Technol 63(2):1254–1260

    Article  CAS  Google Scholar 

  • Frémont L (2000) Biological effects of resveratrol. Life Sci 66(8):663–673

    Article  Google Scholar 

  • Gould S, Scott RC (2005) 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol 43(10):1451–1459

    Article  CAS  Google Scholar 

  • Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98(5):2035–2044

    Article  CAS  Google Scholar 

  • Hirayama F, Uekama K (1999) Cyclodextrin-based controlled drug release system. Adv Drug Deliv Rev 36(1):125–141

    Article  CAS  Google Scholar 

  • Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 86(2):147–162

    Article  CAS  Google Scholar 

  • Jambhekar SS, Breen P (2016) Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today 21(2):356–362

    Article  CAS  Google Scholar 

  • Ji Y, Shan S, He M, Chu C-C (2017) Inclusion complex from cyclodextrin-grafted hyaluronic acid and pseudo protein as biodegradable nano-delivery vehicle for gambogic acid. Acta Biomater 62:234–245

    Article  CAS  Google Scholar 

  • Jun SW, Kim M-S, Kim J-S, Park HJ, Lee S, Woo J-S, Hwang S-J (2007) Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm 66(3):413–421

    Article  CAS  Google Scholar 

  • Kaur N, Garg T, Goyal AK, Rath G (2016) Formulation, optimization and evaluation of curcumin-β-cyclodextrin-loaded sponge for effective drug delivery in thermal burns chemotherapy. Drug Deliv 23(7):2245–2254

    CAS  Google Scholar 

  • Kellici TF, Ntountaniotis D, Leonis G, Chatziathanasiadou M, Chatzikonstantinou AV, Becker-Baldus J, Glaubitz C, Tzakos AG, Viras K, Chatzigeorgiou P (2015) Investigation of the interactions of silibinin with 2-hydroxypropyl-β-cyclodextrin through biophysical techniques and computational methods. Mol Pharm 12(3):954–965

    Article  CAS  Google Scholar 

  • Lee S-H, Kim YH, Yu H-J, Cho N-S, Kim T-H, Kim D-C, Chung C-B, Hwang Y-I, Kim KH (2007) Enhanced bioavailability of soy isoflavones by complexation with β-cyclodextrin in rats. Biosci Biotechnol Biochem 71(12):2927–2933

    Article  CAS  Google Scholar 

  • Li S, Purdy WC (1992) Cyclodextrins and their applications in analytical chemistry. Chem Rev 92(6):1457–1470

    Article  CAS  Google Scholar 

  • Liu RH (2013) Health-promoting components of fruits and vegetables in the diet. Adv Nutr Int Rev J 4(3):384S–392S

    Article  CAS  Google Scholar 

  • Loftsson T, Brewster ME (2012) Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci 101(9):3019–3032

    Article  CAS  Google Scholar 

  • Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329(1):1–11

    Article  CAS  Google Scholar 

  • Loftsson T, Jarho P, Masson M, Järvinen T (2005) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2(2):335–351

    Article  CAS  Google Scholar 

  • Lu Z, Cheng B, Hu Y, Zhang Y, Zou G (2009) Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. Food Chem 113(1):17–20

    Article  CAS  Google Scholar 

  • Manach C, Hubert J, Llorach R, Scalbert A (2009) The complex links between dietary phytochemicals and human health deciphered by metabolomics. Mol Nutr Food Res 53(10):1303–1315

    Article  CAS  Google Scholar 

  • Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, Matioli G (2014) Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem 153:361–370

    Article  CAS  Google Scholar 

  • Marques HMC (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25(5):313–326

    Article  CAS  Google Scholar 

  • Martina K, Binello A, Lawson D, Jicsinszky L, Cravotto G (2013) Recent applications of cyclodextrins as food additives and in food processing. Curr Nutr Food Sci 9(3):167–179

    Article  CAS  Google Scholar 

  • McClements DJ, Li F, Xiao H (2015) The nutraceutical bioavailability classification scheme: classifying nutraceuticals according to factors limiting their oral bioavailability. Ann Rev Food Sci Technol 6:299–327

    Article  CAS  Google Scholar 

  • Mellet CO, Fernández JMG, Benito JM (2011) Cyclodextrin-based gene delivery systems. Chem Soc Rev 40(3):1586–1608

    Article  CAS  Google Scholar 

  • Meyer H, Bolarinwa A, Wolfram G, Linseisen J (2006) Bioavailability of apigenin from apiin-rich parsley in humans. Ann Nutr Metab 50(3):167–172

    Article  CAS  Google Scholar 

  • Mohtar N, Taylor KM, Sheikh K, Somavarapu S (2017) Design and development of dry powder sulfobutylether-β-cyclodextrin complex for pulmonary delivery of fisetin. Eur J Pharm Biopharm 113:1–10

    Article  CAS  Google Scholar 

  • Oommen E, Shenoy BD, Udupa N, Kamath R, Devi P (1999) Antitumour Efficacy of Cyclodextrin-complexed and niosome-encapsulated plumbagin in mice bearing melanoma B16F1. Pharm Pharmacol Commun 5(4):281–285

    Article  CAS  Google Scholar 

  • Oprean C, Mioc M, Csányi E, Ambrus R, Bojin F, Tatu C, Cristea M, Ivan A, Danciu C, Dehelean C (2016) Improvement of ursolic and oleanolic acids’ antitumor activity by complexation with hydrophilic cyclodextrins. Biomed Pharmacother 83:1095–1104

    Article  CAS  Google Scholar 

  • Pápay ZE, Sebestyén Z, Ludányi K, Kállai N, Balogh E, Kósa A, Somavarapu S, Böddi B, Antal I (2016) Comparative evaluation of the effect of cyclodextrins and pH on aqueous solubility of apigenin. J Pharm Biomed Anal 117:210–216

    Article  CAS  Google Scholar 

  • Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135

    Article  CAS  Google Scholar 

  • Pinho E, Soares G, Henriques M (2015) Cyclodextrin modulation of gallic acid in vitro antibacterial activity. J Incl Phenom Macrocycl Chem 81(1–2):205–214

    Article  CAS  Google Scholar 

  • Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C (2014) Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B 117:520–527

    Article  CAS  Google Scholar 

  • Popović M, Kaurinović B, Trivić S, Mimica-Dukić N, Bursać M (2006) Effect of celery (Apium graveolens) extracts on some biochemical parameters of oxidative stress in mice treated with carbon tetrachloride. Phytother Res 20(7):531–537

    Article  Google Scholar 

  • Serri C, Argirò M, Piras L, Mita DG, Saija A, Mita L, Forte M, Giarra S, Biondi M, Crispi S (2017) Nano-precipitated curcumin loaded particles: effect of carrier size and drug complexation with (2-hydroxypropyl)-β-cyclodextrin on their biological performances. Int J Pharm 520(1):21–28

    Article  CAS  Google Scholar 

  • Shulman M, Cohen M, Soto-Gutierrez A, Yagi H, Wang H, Goldwasser J, Lee-Parsons CW, Benny-Ratsaby O, Yarmush ML, Nahmias Y (2011) Enhancement of naringenin bioavailability by complexation with hydroxypropoyl-β-cyclodextrin. PLoS ONE 6(4):e18033

    Article  CAS  Google Scholar 

  • Silva JC, Almeida JR, Quintans JS, Gopalsamy RG, Shanmugam S, Serafini MR, Oliveira MR, Silva BA, Martins AO, Castro FF (2016) Enhancement of orofacial antinociceptive effect of carvacrol, a monoterpene present in oregano and thyme oils, by β-cyclodextrin inclusion complex in mice. Biomed Pharmacother 84:454–461

    Article  CAS  Google Scholar 

  • Soica C, Danciu C, Savoiu-Balint G, Borcan F, Ambrus R, Zupko I, Bojin F, Coricovac D, Ciurlea S, Avram S (2014) Betulinic acid in complex with a gamma-cyclodextrin derivative decreases proliferation and in vivo tumor development of non-metastatic and metastatic B164A5 cells. Int J Mol Sci 15(5):8235–8255

    Article  CAS  Google Scholar 

  • Stella VJ, He Q (2008) Cyclodextrins. Toxicol Pathol 36(1):30–42

    Article  CAS  Google Scholar 

  • Suzuki R, Inoue Y, Tsunoda Y, Murata I, Isshiki Y, Kondo S, Kanamoto I (2015) Effect of γ-cyclodextrin derivative complexation on the physicochemical properties and antimicrobial activity of hinokitiol. J Incl Phenom Macrocycl Chem 83(1–2):177–186

    Article  CAS  Google Scholar 

  • Wang X, Deng L, Cai L, Zhang X, Zheng H, Deng C, Duan X, Zhao X, Wei Y, Chen L (2011) Preparation, characterization, pharmacokinetics, and bioactivity of honokiol-in-hydroxypropyl-β-cyclodextrin-in-liposome. J Pharm Sci 100(8):3357–3364

    Article  CAS  Google Scholar 

  • Wu H, Liang H, Yuan Q, Wang T, Yan X (2010) Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin. Carbohydr Polym 82(3):613–617

    Article  CAS  Google Scholar 

  • Xu X, Yu H, Hang L, Shao Y, Ding S, Yang X (2014) Preparation of naringenin/β-cyclodextrin complex and its more potent alleviative effect on choroidal neovascularization in rats. BioMed Res Int 2014:623509

    Google Scholar 

  • Yang L-J, Ma S-X, Zhou S-Y, Chen W, Yuan M-W, Yin Y-Q, Yang X-D (2013) Preparation and characterization of inclusion complexes of naringenin with β-cyclodextrin or its derivative. Carbohydr Polym 98(1):861–869

    Article  CAS  Google Scholar 

  • Yang Z, Argenziano M, Salamone P, Pirro E, Sprio AE, Di Scipio F, Carere ME, Quaglino E, Cavallo F, Cavalli R (2016) Preclinical pharmacokinetics comparison between resveratrol 2-hydroxypropyl-β-cyclodextrin complex and resveratrol suspension after oral administration. J Incl Phenom Macrocycl Chem 86(3–4):263–271

    Article  CAS  Google Scholar 

  • Yee EM, Hook JM, Bhadbhade MM, Vittorio O, Kuchel RP, Brandl MB, Tilley RD, Black DS, Kumar N (2017) Preparation, characterization and in vitro biological evaluation of (1:2) phenoxodiol-β-cyclodextrin complex. Carbohydr Polym 165:444–454

    Article  CAS  Google Scholar 

  • Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65(9):1215–1233

    Article  CAS  Google Scholar 

  • Zhang L, Man S, Qiu H, Liu Z, Zhang M, Ma L, Gao W (2016) Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ Toxicol Pharmacol 48:31–38

    Article  CAS  Google Scholar 

  • Zhu Z-Y, Luo Y, Liu Y, Wang X-T, Liu F, Guo M-Z, Wang Z, Liu A-J, Zhang Y-M (2016) Inclusion of chrysin in β-cyclodextrin and its biological activities. J Drug Deliv Sci Technol 31:176–186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.J. thanks the Department of Science & Technology (DST), Government of India for financial assistance via Grant No. ECR/ 2017/001381. The manuscript bears institutional communication number IIIM/2279/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundeep Jaglan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, D., Saneja, A. & Jaglan, S. Cyclodextrin-based delivery systems for dietary pharmaceuticals. Environ Chem Lett 17, 1263–1270 (2019). https://doi.org/10.1007/s10311-019-00878-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-019-00878-w

Keywords

Navigation