Skip to main content
Log in

Cyclodextrin-based nanostructured materials for sustainable water remediation applications

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The problem of water pollution is a burning social issue even though sustainable efforts are being made in recent years. The discharged water from various industries contains a considerable amount of organic and inorganic pollutants. Heavy metals, dyes, and aromatic hydrocarbons constitute a significant portion of water contaminants, and it is challenging to remove contaminants at low concentration value. Cyclodextrin nanomaterials modified with carbon nanomaterials, polymer, and metal nanoparticles have been reported as promising and sustainable tools for water remediation through adsorption and catalytic degradation approaches. The cyclodextrin polymers have been developed as nanoporous and nanosponge materials using different bifunctional linking reagents, which are highly efficient in removing a wide variety of organic and inorganic waste from water bodies through adsorption. Various chemical modifications in cyclodextrin-based nanostructured materials have been reported to enhance its affinity for the contaminants. In the present review, recent advances in cyclodextrin-based nanostructured materials for water remediation application via different mechanisms have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdolmaleki A, Mallakpour S, Borandeh S (2015) Efficient heavy metal ion removal by triazinyl-β-cyclodextrin functionalized iron nanoparticles. RSC Adv 5:90602–90608

    CAS  Google Scholar 

  • Adams FV, Nxumalo EN, Krause RWM, Hoek EMV, Mamba BB (2012) Preparation and characterization of polysulfone/β-cyclodextrin polyurethane composite nanofiltration membranes. J Membr Sci 405-406:291–299

    CAS  Google Scholar 

  • Adams FV, Nxumalo EN, Krause RWM, Hoek EMV, Mamba BB (2014) Application of polysulfone/cyclodextrin mixed-matrix membranes in the removal of natural organic matter from water. Phys Chem Earth A B C 67-69:71–78

    Google Scholar 

  • Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    CAS  Google Scholar 

  • Agócs TZ, Puskás I, Varga E, Molnár M, Fenyvesi É (2016) Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants. Beilstein J Org Chem 12:2873–2882

    Google Scholar 

  • Alzate-Sánchez DM, Smith BJ, Alsbaiee A, Hinestroza JP, Dichtel WR (2016) Cotton fabric functionalized with a β-cyclodextrin polymer captures organic pollutants from contaminated air and water. Chem Mater 28:8340–8346

    Google Scholar 

  • Arkas M, Allabashi R, Tsiourvas D, Mattausch E-M, Perfler R (2006) Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol 40:2771–2777

    CAS  Google Scholar 

  • Arslan M, Sayin S, Yilmaz M (2013) Removal of carcinogenic azo dyes from water by new cyclodextrin-immobilized iron oxide magnetic nanoparticles. Water Air Soil Pollut 224:1527

    Google Scholar 

  • Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gandara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640

    CAS  Google Scholar 

  • Badruddoza AZM, Hazel GSS, Hidajat K, Uddin MS (2010) Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue. Colloids Surf A Physicochem Eng Asp 367:85–95

    CAS  Google Scholar 

  • Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185:1177–1186

    CAS  Google Scholar 

  • Badruddoza AZM, Shawon ZBZ, Tay DWJ, Hidajat K, Uddin MS (2012) Endocrine disrupters and toxic metal ions removal by carboxymethyl-?-cyclodextrin polymer grafted onto magnetic nanoadsorbents. J Chem Eng 27:69–73

    Google Scholar 

  • Badruddoza AZM, Shawon ZBZ, Tay WJD, Hidajat K, Uddin MS (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91:322–332

    CAS  Google Scholar 

  • Badruddoza AZM, Bhattarai B, Suri RPS (2017) Environmentally friendly β-cyclodextrin–ionic liquid polyurethane-modified magnetic sorbent for the removal of PFOA, PFOS, and Cr (VI) from water. ACS Sustain Chem Eng 5:9223–9232

    CAS  Google Scholar 

  • Bhattarai B, Muruganandham M, Suri RPS (2014) Development of high efficiency silica coated β-cyclodextrin polymeric adsorbent for the removal of emerging contaminants of concern from water. J Hazard Mater 273:146–154

    CAS  Google Scholar 

  • Celebioglu A, Demirci S, Uyar T (2014) Cyclodextrin-grafted electrospun cellulose acetate nanofibers via “Click” reaction for removal of phenanthrene. Appl Surf Sci 305:581–588

    CAS  Google Scholar 

  • Chabalala MB, Seshabela BC, Van Hulle S, Mamba BB, Mhlanga SD, Nxumalo EN (2018) 'Cyclodextrin-based nanofibers and membranes: fabrication, properties and applications. In: Cyclodextrin-A Versatile Ingredient. InTech

  • Chalasani R, Vasudevan S (2013) Cyclodextrin-functionalized Fe3O4@ TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 7:4093–4104

    CAS  Google Scholar 

  • Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16:307–325

    CAS  Google Scholar 

  • Chen X, Parker SG, Zou G, Wei S, Zhang Q (2010) β-Cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 4:6387–6394

    CAS  Google Scholar 

  • Chen J-Y, Cao S-R, Xi C-X, Yu C, Li X-L, Zhang L, Wang G-M, Chen Y-L, Chen Z-Q (2018) A novel magnetic β-cyclodextrin modified graphene oxide adsorbent with high recognition capability for 5 plant growth regulators. Food Chem 239:911–919

    CAS  Google Scholar 

  • Chen B, Chen S, Zhao H, Yang L, Long F, Pan X (2019) A versatile β-cyclodextrin and polyethyleneimine bi-functionalized magnetic nanoadsorbent for simultaneous capture of methyl orange and Pb (II) from complex wastewater. Chemosphere 216:605–616

    CAS  Google Scholar 

  • Chorawalaa KK, Mehta MJ (2015) Applications of nanotechnology in wastewater treatment. Int J Innov Emerg Res Eng 2:21–26

    Google Scholar 

  • Corsi I, Fiorati A, Grassi G, Bartolozzi I, Daddi T, Melone L, Punta C (2018) Environmentally sustainable and ecosafe polysaccharide-based materials for water nano-treatment: an eco-design study. Materials 11:1228

    Google Scholar 

  • Crini G, Cosentino C, Bertini S, Naggi A, Torri G, Vecchi C, Janus L, Morcellet M (1998) Solid state NMR spectroscopy study of molecular motion in cyclomaltoheptaose (β-cyclodextrin) crosslinked with epichlorohydrin1. Carbohydr Res 308:37–45

    CAS  Google Scholar 

  • Dave S, Sharma R (2015) Use of nanoparticles in water treatment: a review. Int Res J Environ Sci 4:103–106

    Google Scholar 

  • Debnath B, Biswas NT, Baidya R, Ghosh SK (2014) Nanotechnology in waste water treatment: a review. Ecol Urban Areas 2014:563

    Google Scholar 

  • Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Google Scholar 

  • Dodziuk H (2006) Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley

  • Dong H, Zeng G, Lin T, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    CAS  Google Scholar 

  • Dutta AK, Maji SK, Adhikary B (2014) γ-Fe2O3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater Res Bull 49:28–34

    CAS  Google Scholar 

  • Eghbali P, Hassani A, Sündü B, Metin Ö (2019) Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpg-C3N4): Preparation, characterization and catalytic performance. J Mol Liq 290:111208

    CAS  Google Scholar 

  • Euvrard É, Morin-Crini N, Druart C, Bugnet J, Martel B, Cosentino C, Moutarlier V, Crini G (2016) Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters. Beilstein J Org Chem 12:1826–1838

    CAS  Google Scholar 

  • Fan L, Li M, Lv Z, Sun M, Luo C, Lu F, Qiu H (2012) Fabrication of magnetic chitosan nanoparticles grafted with β-cyclodextrin as effective adsorbents toward hydroquinol. Colloids Surf B: Biointerfaces 95:42–49

    Google Scholar 

  • Fan L, Luo C, Sun M, Qiu H, Li X (2013) Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surf B: Biointerfaces 103:601–607

    CAS  Google Scholar 

  • Gao Y, Yu C, Song G, Tang Y, Li H (2011) β-Cyclodextrin covalently functionalized single-walled carbon nanotubes: synthesis, characterization and a sensitive biosensor platform. J Biomater Nanobiotechnol 2:454–460

    CAS  Google Scholar 

  • Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein J Nanotechnol 4:345–351

    Google Scholar 

  • Gürses A, Hassani A, Kıranşan M, Açışlı Ö, Karaca S (2014) Removal of methylene blue from aqueous solution using by untreated lignite as potential low-cost adsorbent: kinetic, thermodynamic and equilibrium approach. J Water Process Eng 2:10–21

    Google Scholar 

  • Han J, Xie K, Zhongjie D, Zou W, Zhang C (2015) β-cyclodextrin functionalized polystyrene porous monoliths for separating phenol from wastewater. Carbohydr Polym 120:85–91

    CAS  Google Scholar 

  • Harada A (2001) Cyclodextrin-based molecular machines. Acc Chem Res 34:456–464

    CAS  Google Scholar 

  • Hassani A, Alidokht L, Khataee AR, Karaca S (2014a) Optimization of comparative removal of two structurally different basic dyes using coal as a low-cost and available adsorbent. J Taiwan Inst Chem Eng 45:1597–1607

    CAS  Google Scholar 

  • Hassani A, Vafaei F, Karaca S, Khataee AR (2014b) Adsorption of a cationic dye from aqueous solution using Turkish lignite: kinetic, isotherm, thermodynamic studies and neural network modeling. J Ind Eng Chem 20:2615–2624

    CAS  Google Scholar 

  • Hassani A, Khataee A, Karaca S, Shirzad-Siboni M (2015) Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: kinetic and isotherm studies. Environ Technol 36:3125–3135

    CAS  Google Scholar 

  • Hassani A, Eghbali P, Metin Ö (2018) Sonocatalytic removal of methylene blue from water solution by cobalt ferrite/mesoporous graphitic carbon nitride (CoFe 2 O 4/mpg-C 3 N 4) nanocomposites: response surface methodology approach. Environ Sci Pollut Res 25:32140–32155

    CAS  Google Scholar 

  • Hu J, Shao D, Chen C, Sheng G, Li J, Wang X, Nagatsu M (2010) Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application. J Phys Chem B 114:6779–6785

    CAS  Google Scholar 

  • Jain KK (2012) Nanotechnology and water. Contemp Mater 1(3):26–30

    Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63

    CAS  Google Scholar 

  • Jambhekar SS, Breen P (2016) Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today 21:356–362

    CAS  Google Scholar 

  • Jeong HK, Echeverria E, Chakraborti P, Le HT, Dowben PA (2017) Electronic structure of cyclodextrin–carbon nanotube composite films. RSC Adv 7:10968–10972

    CAS  Google Scholar 

  • Jie G, Zhao K, Zhang X, Cai Z, Chen M, Chen T, Wei J (2015) Preparation and characterization of carboxyl multi-walled carbon nanotubes/calcium alginate composite hydrogel nano-filtration membrane. Mater Lett 157:112–115

    CAS  Google Scholar 

  • Jurecska L, Dobosy P, Barkács K, Fenyvesi É, Záray G (2014) Characterization of cyclodextrin containing nanofilters for removal of pharmaceutical residues. J Pharm Biomed Anal 98:90–93

    CAS  Google Scholar 

  • Karoyo AH, Wilson LD (2015) Nano-sized cyclodextrin-based molecularly imprinted polymer adsorbents for perfluorinated compounds—a mini-review. Nanomaterials 5:981–1003

    CAS  Google Scholar 

  • Kawano S, Kida T, Takemine S, Matsumura C, Nakano T, Kuramitsu M, Adachi K, Akashi M (2013) Efficient removal and recovery of perfluorinated compounds from water by surface-tethered β-cyclodextrins on polystyrene particles. Chem Lett 42:392–394

    CAS  Google Scholar 

  • Kayaci F, Aytac Z, Uyar T (2013) Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution. J Hazard Mater 261:286–294

    CAS  Google Scholar 

  • Khataee A, Alidokht L, Hassani A, Karaca S (2013) Response surface analysis of removal of a textile dye by a Turkish coal powder. Adv Environ Res 2:291–308

    Google Scholar 

  • Knoche KL, Hickey DP, Milton RD, Curchoe CL, Minteer SD (2016) Hybrid glucose/O2 biobattery and supercapacitor utilizing a pseudocapacitive dimethylferrocene redox polymer at the bioanode. ACS Energy Lett 1:380–385

    CAS  Google Scholar 

  • Krause RWM, Mamba BB, Dlamini LN, Durbach SH (2010) Fe-Ni nanoparticles supported on carbon nanotube-co-cyclodextrin polyurethanes for the removal of trichloroethylene in water. J Nanopart Res 12:449–456

    CAS  Google Scholar 

  • Krause R, Mamba B, Bambo M, Malefetse TJ (2011) Cyclodextrin polymers: synthesis and application in water treatment

  • Kumar A, Sharma G, Naushad M, Thakur S (2015) SPION/β-cyclodextrin core–shell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem Eng J 280:175–187

    CAS  Google Scholar 

  • Kurian M, Nair DS (2015) Heterogeneous Fenton behavior of nano nickel zinc ferrite catalysts in the degradation of 4-chlorophenol from water under neutral conditions. J Water Process Eng 8:e37–e49

    Google Scholar 

  • Kyzas GZ, Matis KA (2015) Nanoadsorbents for pollutants removal: a review. J Mol Liq 203:159–168

    CAS  Google Scholar 

  • Le HN, Jeong H (2015) β-Cyclodextrin–graphite oxide–carbon nanotube composite for enhanced electrochemical supramolecular recognition. J Phys Chem C 119:18671–18677

    CAS  Google Scholar 

  • Léger B, Menuel S, Landy D, Blach J-F, Monflier E, Ponchel A (2010) Noncovalent functionalization of multiwall carbon nanotubes by methylated-β-cyclodextrins modified by a triazole group. Chem Commun 46:7382–7384

    Google Scholar 

  • Li D, Ma M (2000) Nanosponges for water purification. Clean Prod Process 2:112–116

    Google Scholar 

  • Li J, Chen C, Zhao Y, Hu J, Shao D, Wang X (2013) Synthesis of water-dispersible Fe3O4@β-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chem Eng J 229:296–303

    CAS  Google Scholar 

  • Li L, Fan L, Duan H, Wang X, Luo C (2014) Magnetically separable functionalized graphene oxide decorated with magnetic cyclodextrin as an excellent adsorbent for dye removal. RSC Adv 4:37114–37121

    CAS  Google Scholar 

  • Li J, Qiu C, Fan H, Bai Y, Jin Z, Wang J (2018a) A Novel Cyclodextrin-functionalized hybrid silicon wastewater nano-adsorbent naterial and its adsorption properties. Molecules 23:1485

    Google Scholar 

  • Li X, Zhou M, Jia J, Ma J, Jia Q (2018b) Design of a hyper-crosslinked β-cyclodextrin porous polymer for highly efficient removal toward bisphenol a from water. Sep Purif Technol 195:130–137

    CAS  Google Scholar 

  • Li Y, Zhou Y, Zhou Y, Lei J, Shengyan P (2019) 'Cyclodextrin modified filter paper for removal of cationic dyes/Cu ions from aqueous solutions. Water Sci Technol

  • Liu X, Liang Y, Yin W, Zhou L, Tian G, Shi J, Yang Z, Xiao D, Zhanjun G, Zhao Y (2014) A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. J Mater Chem A 2:12296–12303

    CAS  Google Scholar 

  • Liu Z-G, Xu M, Yang Z, Wang Y-X, Wang S-Q, Wang H-X (2017) Efficient removal of organic dyes from water by β-Cyclodextrin functionalized graphite carbon nitride composite. Chem Sel 2:1753–1758

    CAS  Google Scholar 

  • Lo Meo P, Lazzara G, Liotta L, Riela S, Noto R (2014) Cyclodextrin–calixarene co-polymers as a new class of nanosponges. Polym Chem 5:4499–4510

    CAS  Google Scholar 

  • Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11

    CAS  Google Scholar 

  • Lukhele LP, Krause RWM, Mamba BB (n.d.) Application of silver impregnated carbon nanotubes and cyclodextrin polymers, for the destruction of bacteria in water

  • Mahdavian AR, Mirrahimi MA-S (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159:264–271

    CAS  Google Scholar 

  • Malefetse J, Mamba TB, Krause R, Mahlambi M (2009) Cyclodextrin-ionic liquid polyurethanes for application in drinking water treatment

  • Mamba BB, Krause RW, Malefetse TJ, Nxumalo EN (2007) Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water. Environ Chem Lett 5:79–84

    CAS  Google Scholar 

  • Mamba BB, Krause RW, Malefetse TJ, Gericke G, Sithole SP (2008) Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation. Water SA 34:657–660

    CAS  Google Scholar 

  • Mamba G, Mbianda XY, Govender P, Mamba B, Krause R (2010) Application of multiwalled carbon nanotube-cyclodextrin polymers in the removal of heavy metals from water

  • Mamba G, Mbianda XY, Govender PP (2013) Phosphorylated multiwalled carbon nanotube-cyclodextrin polymer: Synthesis, characterisation and potential application in water purification. Carbohydr Polym 98:470–476

    CAS  Google Scholar 

  • Masheane ML, Malinga SP, Nxumalo EN, Mhlanga SD (2017) Environmentally benign chitosan-based nanofibres for potential use in water treatment AU - Nthunya, Lebea N. Cogent Chem 3:1357865

    Google Scholar 

  • Massaro M, Colletti C, Lazzara G, Guernelli S, Noto R, Riela S (2017) Synthesis and characterization of HNT-cyclodextrin nanosponges for enhanced dyes adsorption

  • Mhlanga SD, Mamba BB, Krause RW, Malefetse TJ (2007) Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. J Chem Technol Biotechnol 82:382–388

    CAS  Google Scholar 

  • Mohamed HM, Wilson LD, Headley JV, Peru KM (2008) Novel materials for environmental remediation of tailing pond waters containing naphthenic acids. Process Saf Environ Prot 86:237–243

    CAS  Google Scholar 

  • Mohamed HM, Wilson LD, Headley JV, Peru KM (2011) Investigation of the sorption properties of β-cyclodextrin-based polyurethanes with phenolic dyes and naphthenates. J Colloid Interface Sci 356:217–226

    CAS  Google Scholar 

  • Mohammadi A, Mousavi SH (2018) Enhanced photocatalytic performance of TiO2 by β-cyclodextrin for the degradation of organic dyes. J Water Environ Nanotechnol 3:254–264

    CAS  Google Scholar 

  • Mohammadi A, Veisi P (2018) High adsorption performance of β-cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater. J Environ Chem Eng 6:4634–4643

    CAS  Google Scholar 

  • Morin-Crini N, Winterton P, Fourmentin S, Wilson LD, Fenyvesi É, Crini G (2018) Water-insoluble β-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: a review of inclusion mechanisms. Prog Polym Sci 78:1–23

    CAS  Google Scholar 

  • Mousavi SH, Shokoofehpoor F, Mohammadi A (2019) Synthesis and characterization of γ-CD-modified TiO2 nanoparticles and its adsorption performance for different types of organic dyes. J Chem Eng Data 64:135–149

    CAS  Google Scholar 

  • Nkambule TI, Krause RW, Mamba BB, Haarhoff J (2009) Removal of natural organic matter from water using ion-exchange resins and cyclodextrin polyurethanes. Phys Chem Earth A B C 34:812–818

    Google Scholar 

  • Nthunya LN, Masheane ML, Malinga SP, Nxumalo EN, Barnard TG, Kao M, Tetana ZN, Mhlanga SD (2017) Greener approach to prepare electrospun antibacterial β-cyclodextrin/cellulose acetate nanofibers for removal of bacteria from water. ACS Sustain Chem Eng 5:153–160

    CAS  Google Scholar 

  • Nyamukamba P, Greyling C, Tichagwa L (2011) Preparation of photocatalytic TiO2 nanoparticles immobilized on carbon nanofibres for water purification. University of Fort, Hare

    Google Scholar 

  • Ogoshi T, Takashima Y, Yamaguchi H, Harada A (2007) Chemically-responsive sol− gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins. J Am Chem Soc 129:4878–4879

    CAS  Google Scholar 

  • Pan B, Pan B, Zhang W, Lu L, Zhang Q, Zheng S (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151:19–29

    CAS  Google Scholar 

  • Pooresmaeil M, Namazi H (2018) β-Cyclodextrin grafted magnetic graphene oxide applicable as cancer drug delivery agent: synthesis and characterization. Mater Chem Phys 218:62–69

    CAS  Google Scholar 

  • Potolinca V, Oprea S, Ciobanu A, Lungu NC (2011) Synthesis and characterization of cyclodextrin polyurethane with scavenging properties

  • Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    CAS  Google Scholar 

  • Rajamanikandan R, Ilanchelian M (2018) β-cyclodextrin functionalised silver nanoparticles as a duel colorimetric probe for ultrasensitive detection of Hg2+ and S2− ions in environmental water samples. Mater Today Commun 15:61–69

    CAS  Google Scholar 

  • Ramaseshan R, Sundarrajan S, Yingjun L, Barhate RS, Lala NL, Ramakrishna S (2006) Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology 17:2947–2953

    CAS  Google Scholar 

  • Rananga LE, Magadzu T (2015) Comparative studies of silver doped carbon nanotubes and β-cyclodextrin for water disinfection. Dig J Nanomater Bios 10:831–836

    Google Scholar 

  • Rima J, Assaker K (2013a) B-Cyclodextrin polyurethanes copolymerised with beetroot fibers (Bio-Polymer), for the removal of organic and inorganic contaminants from water. J Food Res 2:150

    CAS  Google Scholar 

  • Rima J, Assaker K (2013b) B-Cyclodextrin polyurethanes copolymerised with beetroot fibers (Bio-Polymer), for the removal of organic and inorganic contaminants from water

  • Salazar S, Guerra D, Yutronic N, Jara P (2018) Removal of aromatic chlorinated pesticides from aqueous solution using β-cyclodextrin polymers decorated with Fe3O4 nanoparticles

  • Sanip SM, Ismail AF, Aziz M, Soga T (2009) Cyclodextrin-functionalized carbon nanotubes for mixed matrix membrane. In: AIP Conference Proceedings. AIP, pp 196–200

  • Shende P, Kulkarni YA, Gaud RS, Deshmukh K, Cavalli R, Trotta F, Caldera F (2015) 'Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J Pharm Sci 104:1856–1863

    CAS  Google Scholar 

  • Shi J, Li G, Cui Y, Zhang Y, Liu D, Shi Y, He H (2019) Surface-imprinted β-cyclodextrin-functionalized carbon nitride nanosheets for fluorometric determination of sterigmatomycin. Microchim Acta 186:808

    CAS  Google Scholar 

  • Sikder T, Rahman M, Hosokawa T, Kurasaki M, Saito T (2018) Remediation of water pollution with native cyclodextrins and modified cyclodextrins: a comparative overview and perspectives. Chem Eng J

  • Simelane S (2011) Phosphorylated nanoporous β-cyclodextrin polymers: synthesis, characterization and their application in water purification. University of Johannesburg

  • Song X-J, Yang F, Wang X, Xuan H (2012) Preparation of β-cyclodextrin-modified multi-walled CNTs and its application in capturing βb-naphthol from wastewater. IET Micro Nano Lett 7:892–895

    Google Scholar 

  • Steed JW, Atwood JL (2013) Supramolecular chemistry. Wiley

  • Teng M, Li F, Zhang B, Taha AA (2011) Electrospun cyclodextrin-functionalized mesoporous polyvinyl alcohol/SiO2 nanofiber membranes as a highly efficient adsorbent for indigo carmine dye. Colloids Surf A Physicochem Eng Asp 385:229–234

    CAS  Google Scholar 

  • Tiwari G, Tiwari R, Rai AK (2010) Cyclodextrins in delivery systems: applications. J Pharm Bioallied Sci 2:72–79

    CAS  Google Scholar 

  • Topuz F, Uyar T (2017a) Cyclodextrin-functionalized mesostructured silica nanoparticles for removal of polycyclic aromatic hydrocarbons. J Colloid Interface Sci 497:233–241

    CAS  Google Scholar 

  • Topuz F, Uyar T (2017b) Poly-cyclodextrin cryogels with aligned porous structure for removal of polycyclic aromatic hydrocarbons (PAHs) from water. J Hazard Mater 335:108–116

    CAS  Google Scholar 

  • Tötterman A, Kilpeläinen I, Mannermaa J-P (1997) Water-soluble β-cyclodextrins in paediatric oral solutions of spironolactone: solubilization and stability of spironolactone in solutions of β-cyclodextrin derivatives

  • Trotta F, Zanetti M, Cavalli R (2012) Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 8:2091–2099

    CAS  Google Scholar 

  • Uyar T, Nur Y, Hacaloglu J, Besenbacher F (2009) Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes. Nanotechnology 20:125703

    Google Scholar 

  • Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, Pummakarnchana O (2007) Nanostructures in environmental pollution detection, monitoring, and remediation. Sci Technol Adv Mater 8:47–59

    CAS  Google Scholar 

  • Wang G, Liu X, Yu B, Luo G (2004) Electrocatalytic response of norepinephrine at a β-cyclodextrin incorporated carbon nanotube modified electrode. J Electroanal Chem 567:227–231

    CAS  Google Scholar 

  • Wang H, Wang Y, Zhou Y, Han P, Lü X (2014) A facile removal of phenol in wastewater using crosslinked β-cyclodextrin particles with ultrasonic treatment

  • Wang C, Li B, Niu W, Hong S, Saif B, Wang S, Dong C, Shuang S (2015a) β-Cyclodextrin modified graphene oxide–magnetic nanocomposite for targeted delivery and pH-sensitive release of stereoisomeric anti-cancer drugs. RSC Adv 5:89299–89308

    CAS  Google Scholar 

  • Wang D, Liu L, Jiang X, Yu J, Chen X (2015b) Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids Surf A Physicochem Eng Asp 466:166–173

    CAS  Google Scholar 

  • Wang S, Yang L, Fan X, Zhang F, Zhang G (2015c) β-Cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of dye pollutants. Front Chem Sci Eng 9:77–83

    CAS  Google Scholar 

  • Wang Z, Zhang P, Hu F, Zhao Y, Zhu L (2017) A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water. Carbohydr Polym 177:224–231

    CAS  Google Scholar 

  • Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275

    CAS  Google Scholar 

  • Zain NNM, Raoov M, Abu Bakar NK, Mohamad S (2016) Cyclodextrin modified ionic liquid material as a modifier for cloud point extraction of phenolic compounds using spectrophotometry. J Incl Phenom Macrocycl Chem 84:137–152

    CAS  Google Scholar 

  • Zhang W, Chen M, Diao G (2011) Electrospinning β-cyclodextrin/poly(vinyl alcohol) nanofibrous membrane for molecular capture. Carbohydr Polym 86:1410–1416

    CAS  Google Scholar 

  • Zhang X, Li X, Deng N (2012) Enhanced and selective degradation of pollutants over cyclodextrin/TiO2 under visible light irradiation. Ind Eng Chem Res 51:704–709

    CAS  Google Scholar 

  • Zhang X, Yang Z, Li X, Deng N, Qian S (2013) β-Cyclodextrin’s orientation onto TiO2 and its paradoxical role in guest’s photodegradation. Chem Commun 49:825–827

    CAS  Google Scholar 

  • Zhang H, Xie Z, Wang Y, Shang X, Nie P, Liu J (2017) Electrospun polyacrylonitrile/β-cyclodextrin based porous carbon nanofiber self-supporting electrode for capacitive deionization. RSC Adv 7:55224–55231

    CAS  Google Scholar 

  • Zhao D, Liang Z, Zhu C-S, Huang W-Q, Jin-Lin H (2009) Water-insoluble β-cyclodextrin polymer crosslinked by citric acid: synthesis and adsorption properties toward phenol and methylene blue. J Incl Phenom Macrocycl Chem 63:195–201

    CAS  Google Scholar 

  • Zhao F, Repo E, Yin D, Chen L, Kalliola S, Tang J, Iakovleva E, Tam KC, Sillanpää M (2017) One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Sci Rep 7:15811

    Google Scholar 

  • Zhou Y, Sun L, Wang H, Liang W, Yang J, Wang L, Shuang S (2016) Investigation on the uptake and release ability of β-cyclodextrin functionalized Fe3O4 magnetic nanoparticles by methylene blue. Mater Chem Phys 170:83–89

    CAS  Google Scholar 

  • Zou Y, Wang X, Ai Y, Liu Y, Ji Y, Wang H, Hayat T, Alsaedi A, Hu W, Wang X (2016) β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. J Mater Chem A 4:14170–14179

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Deshbandhu College, University of Delhi, India, for providing infrastructure and research facilities.

Funding

PK is thankful to SERB-DST (Project File no. ECR/2015/000541), the Government of India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Kumari.

Additional information

Responsible editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Singh, P., Singhal, A. et al. Cyclodextrin-based nanostructured materials for sustainable water remediation applications. Environ Sci Pollut Res 27, 32432–32448 (2020). https://doi.org/10.1007/s11356-020-09519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09519-0

Keywords

Navigation