Skip to main content
Log in

Enhanced production of heterologous proteins by Bacillus licheniformis with defective d-alanylation of lipoteichoic acid

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Heterologous expression is an efficient strategy for target protein production. Dlt operon plays the important role in the d-alanylation of lipoteichoic acid, which might affect the net negative charge of cell wall for protein secretion. In this study, dlt operon was deleted to improve the target protein production, and nattokinase, α-amylase and β-mannanase with different isoelectric points (PIs) were served as the target proteins. Firstly, our results implied that deletions of dltA, dltB, dltC and dltD improved the net negative charge of cell wall for extracellular protein secretion respectively, and among which, the dltB deficient strain DW2ΔdltB showed the best performance, its nattokinase (PI: 8.60) activity was increased by 27.50% compared with that of DW2/pP43SacCNK. Then, the dltABCD mutant strain was constructed, and the net negative charge and nattokinase activity were increased by 55.57% and 37.13% respectively, due to the deficiency of dltABCD. Moreover, it was confirmed that the activities of α-amylase (PI: 6.26) and β-mannanase (PI: 5.75) were enhanced by 44.53% and 53.06% in the dltABCD deficient strains, respectively. Collectively, this study provided a strategy that deletion of dlt operon improves the protein secretion in B. licheniformis, and which strategy was more conducive to the target protein with lower PI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cai D, Wei X, Qiu Y, Chen Y, Chen J, Wen Z, Chen S (2016) High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase. J Appl Microbiol 121(3):704–712

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Wang H, He P, Zhu C, Wang Q, Wei X, Nomura CT, Chen S (2017) A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis. Microb Cell Fact 16(1):70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai D, Hu S, Chen Y, Liu L, Yang S, Ma X, Chen S (2018) Enhanced production of poly-gamma-glutamic acid by overexpression of the global anaerobic regulator Fnr in Bacillus licheniformis WX-02. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-018-2693-7

    Article  PubMed  Google Scholar 

  • Cao H, van Heel AJ, Ahmed H, Mols M, Kuipers OP (2017) Cell surface engineering of Bacillus subtilis improves production yields of heterologously expressed alpha-amylases. Microb Cell Fact 16(1):56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Fu G, Gai Y, Zheng P, Zhang D, Wen J (2015) Combinatorial sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microb Cell Fact 14:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Craynest M, Jorgensen S, Sarvas M, Kontinen VP (2003) Enhanced secretion of heterologous cyclodextrin glycosyltransferase by a mutant of Bacillus licheniformis defective in the D-alanylation of teichoic acids. Lett Appl Microbiol 37(1):75–80

    Article  PubMed  CAS  Google Scholar 

  • Degering C, Eggert T, Puls M, Bongaerts J, Evers S, Maurer KH, Jaeger KE (2010) Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl Environ Microbiol 76(19):6370–6376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harwood CR, Cranenburgh R (2008) Bacillus protein secretion: an unfolding story. Trend Microbiol 16(2):73–79

    Article  CAS  Google Scholar 

  • He P, Zhang Z, Cai D, Chen Y, Wang H, Wei X, Li S, Chen S (2017) High-level production of alpha-amylase by manipulating the expression of alanine racamase in Bacillus licheniformis. Biotechnol Lett 39(9):1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Hyyrylainen HL, Vitikainen M, Thwaite J, Wu H, Sarvas M, Harwood CR, Kontinen VP, Stephenson K (2000) D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. J Biol Chem 275(35):26696–26703

    PubMed  CAS  Google Scholar 

  • Hyyrylainen HL, Pietiainen M, Lunden T, Ekman A, Gardemeister M, Murtomaki-Repo S, Antelmann H, Hecker M, Valmu L, Sarvas M, Kontinen VP (2007) The density of negative charge in the cell wall influences two-component signal transduction in Bacillus subtilis. Microbiology 153(Pt 7):2126–2136

    Article  PubMed  CAS  Google Scholar 

  • Kang Z, Yang S, Du G, Chen J (2014) Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J Ind Microbiol Biotechnol 41(11):1599–1607

    Article  PubMed  CAS  Google Scholar 

  • Kiriukhin MY, Neuhaus FC (2001) D-alanylation of lipoteichoic acid: role of the D-alanyl carrier protein in acylation. J Bacteriol 183(6):2051–2058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacs M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Bruckner R (2006) A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188(16):5797–5805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez CS, Alice AF, Heras H, Rivas EA, Sanchez-Rivas C (2006) Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology 152(Pt 3):605–616

    Article  PubMed  CAS  Google Scholar 

  • Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y (2012) D-Alanylation of lipoteichoic acids confers resistance to cationic peptides in group B Streptococcus by increasing the cell wall density. PLoS Pathog 8(9):e1002891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saeui CT, Mathew MP, Liu L, Urias E, Yarema KJ (2015) Cell surface and membrane engineering: emerging technologies and applications. J Funct Biomater 6(2):454–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherkhanov S, Korman TP, Bowie JU (2014) Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metab Eng 25:1–7

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Fu G, Dong H, Li J, Du Y, Zhang D (2017) High-Efficiency secretion of beta-mannanase in Bacillus subtilis through protein synthesis and secretion optimization. J Agric Food Chem 65(12):2540–2548

    Article  PubMed  CAS  Google Scholar 

  • Spatafora GA, Sheets M, June R, Luyimbazi D, Howard K, Hulbert R, Barnard D, el Janne M, Hudson MC (1999) Regulated expression of the Streptococcus mutans dlt genes correlates with intracellular polysaccharide accumulation. J Bacteriol 181(8):2363–2372

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stephenson K, Jensen CL, Jorgensen ST, Lakey JH, Harwood CR (2000) The influence of secretory-protein charge on late stages of secretion from the Gram-positive bacterium Bacillus subtilis. Biochem J 350 (Pt 1):31–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su L, Jiang Q, Yu L, Wu J (2017) Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C. Microb Cell Fact 16(1):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan Z, Khakbaz P, Chen Y, Lombardo J, Yoon JM, Shanks JV, Klauda JB, Jarboe LR (2017) Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables. Metab Eng 44:1–12

    Article  PubMed  CAS  Google Scholar 

  • Thwaite JE, Baillie LW, Carter NM, Stephenson K, Rees M, Harwood CR, Emmerson PT (2002) Optimization of the cell wall microenvironment allows increased production of recombinant Bacillus anthracis protective antigen from B. subtilis. Appl Environ Microbiol 68(1):227–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda M (2016) Establishment of cell surface engineering and its development. Biosci Biotechnol Biochem 80(7):1243–1253

    Article  PubMed  CAS  Google Scholar 

  • van Dijl JM, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact 12:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vitikainen M, Hyyrylainen HL, Kivimaki A, Kontinen VP, Sarvas M (2005) Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation. J Appl Microbiol 99(2):363–375

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Wang Q, Qiu Y, Nomura CT, Li J, Chen S (2017a) Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2. Res Microbiol 168(6):515–523

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zheng H, Wan X, Huang H, Li J, Nomura CT, Wang C, Chen S (2017b) Optimization of inexpensive agricultural by-products as raw materials for bacitracin production in Bacillus licheniformis DW2. Appl Biochem Biotechnol 183(4):1146–1157

    Article  PubMed  CAS  Google Scholar 

  • Wecke J, Perego M, Fischer W (1996) D-Alanine deprivation of Bacillus subtilis teichoic acids is without effect on cell growth and morphology but affects the autolytic activity. Microb Drug Resist 2(1):123–129

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Zhou Y, Chen J, Cai D, Wang D, Qi G, Chen S (2015) Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization. J Ind Microbiol Biotechnol 42(2):287–295

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Ye L, Zhao D, Li S, Li Q, Zhang B, Bi C, Zhang X (2017) Membrane engineering—A novel strategy to enhance the production and accumulation of beta-carotene in Escherichia coli. Metab Eng 43(Pt A):85–91

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Du G, Chen J, Kang Z (2017) Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis. Appl Microbiol Biotechnol 101(10):4151–4161

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Kang Z, Ling Z, Cao W, Liu L, Wang M, Du G, Chen J (2013) High-level extracellular production of alkaline polygalacturonate lyase in Bacillus subtilis with optimized regulatory elements. Bioresour Technol 146:543–548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Program on Key Basic Research Project (973 Program, No. 2015CB150505), the Technical Innovation Special Fund of Hubei Province (2018ACA149), the Science and Technology Program of Wuhan (20160201010086).

Author information

Authors and Affiliations

Authors

Contributions

DC and SC designed the study. YC, DC and PH carried out the molecular biology studies and construction of engineering strains. YC, FM and QZ carried out the fermentation studies. YC, DC, XM and SC analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shouwen Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Cai, D., He, P. et al. Enhanced production of heterologous proteins by Bacillus licheniformis with defective d-alanylation of lipoteichoic acid. World J Microbiol Biotechnol 34, 135 (2018). https://doi.org/10.1007/s11274-018-2520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2520-x

Keywords

Navigation