Skip to main content
Log in

Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Secretory expression of valuable enzymes by Bacillus subtilis and its related species has attracted intensive work over the past three decades. Although many proteins have been expressed and secreted, the titers of some recombinant enzymes are still low to meet the needs of practical applications. Signal peptides that located at the N-terminal of nascent peptide chains play crucial roles in the secretion process. In this mini-review, we summarize recent progress in secretory expression of recombinant proteins in Bacillus species. In particular, we highlighted and discussed the advances in molecular engineering of secretory machinery components, construction of signal sequence libraries and identification of functional signal peptides with high-throughput screening strategy. The prospects of future research are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, van Dijl JM, Hecker M (2001) A proteomic view on genome-based signal peptide predictions. Genome Res 11:1484–1502

    Article  PubMed  CAS  Google Scholar 

  2. Antelmann H, Williams RC, Miethke M, Wipat A, Albrecht D, Harwood CR, Hecker M (2005) The extracellular and cytoplasmic proteomes of the non-virulent Bacillus anthracis strain UM23C1-2. Proteomics 5:3684–3695

    Article  PubMed  CAS  Google Scholar 

  3. Bolhuis A, Broekhuizen CP, Sorokin A, van Roosmalen ML, Venema G, Bron S, Quax WJ, van Dijl JM (1998) SecDF of Bacillus subtilis, a molecular siamese twin required for the efficient secretion of proteins. J Biol Chem 273:21217–21224

    Article  PubMed  CAS  Google Scholar 

  4. Bolhuis A, Venema G, Quax WJ, Bron S, van Dijl JM (1999) Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis. J Biol Chem 274:24531–24538

    Article  PubMed  CAS  Google Scholar 

  5. Braun P, Gerritse G, van Dijl JM, Quax WJ (1999) Improving protein secretion by engineering components of the bacterial translocation machinery. Curr Opin Biotechnol 10:376–381

    Article  PubMed  CAS  Google Scholar 

  6. Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T (2006) Systematic screening of all signal peptides from Bacillus subtilis: A powerful strategy in optimizing heterologous protein secretion in gram-positive bacteria. J Mol Biol 362:393–402

    Article  PubMed  CAS  Google Scholar 

  7. Brockmeier U, Wendorff M, Eggert T (2006) Versatile expression and secretion vectors for Bacillus subtilis. Curr Microbiol 52:143–148

    Article  PubMed  CAS  Google Scholar 

  8. Caspers M, Brockmeier U, Degering C, Eggert T, Freudl R (2010) Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide. Appl Microbiol Biotechnol 86:1877–1885

    Article  PubMed  CAS  Google Scholar 

  9. Chartier M, Gaudreault F, Najmanovich R (2012) Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events. Bioinformatics 28:1438–1445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  PubMed  CAS  Google Scholar 

  11. Dalbey RE, Chen M, Jiang F, Samuelson JC (2000) Understanding the insertion of transporters and other membrane proteins. Curr Opin Cell Biol 12:435–442

    Article  PubMed  CAS  Google Scholar 

  12. Dalbey RE, Kuhn A (2000) Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annu Rev Cell Dev Biol 16:51–87

    Article  PubMed  CAS  Google Scholar 

  13. Dalbey RE, Lively MO, Bron S, VanDijl JM (1997) The chemistry and enzymology of the type I signal peptidases. Protein Sci 6:1129–1138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. de Keyzer J, van der Does C, Driessen AJM (2003) The bacterial translocase: a dynamic protein channel complex. Cell Mol Life Sci 60:2034–2052

    Article  PubMed  Google Scholar 

  15. Degering C, Eggert T, Puls M, Bongaerts J, Evers S, Maurer KH, Jaeger KE (2010) Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl Environ Microbiol 76:6370–6376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Diao L, Dong Q, Xu Z, Yang S, Zhou J, Freudl R (2012) Functional implementation of the posttranslational SecB-SecA protein-targeting pathway in Bacillus subtilis. Appl Environ Microbiol 78:651–659

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Du Plessis DJF, Nouwen N, Driessen AJM (2011) The Sec translocase. Biochim Biophys Acta 1808:851–865

    Article  PubMed  Google Scholar 

  18. Fu LL, Xu ZR, Li WF, Shuai JB, Lu P, Hu CX (2007) Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnol Adv 25:1–12

    Article  CAS  Google Scholar 

  19. Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D (2005) A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5:3696–3711

    Article  PubMed  CAS  Google Scholar 

  20. Gohar M, Okstad OA, Gilois N, Sanchis V, Kolsto AB, Lereclus D (2002) Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2:784–791

    Article  PubMed  CAS  Google Scholar 

  21. Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342:475–479

    Article  PubMed  CAS  Google Scholar 

  22. Gu W, Zhou T, Wilke CO (2010) A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput Biol 6:e1000664

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guo S, Tang JJ, Wei DZ, Wei W (2014) Construction of a shuttle vector for protein secretory expression in Bacillus subtilis and the application of the mannanase functional heterologous expression. J Microbiol Biotechnol 24:431–439

    Article  PubMed  CAS  Google Scholar 

  24. Hansen G, Hilgenfeld R (2013) Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell Mol Life Sci 70:761–775

    Article  PubMed  CAS  Google Scholar 

  25. Harwood CR, Cranenburgh R (2008) Bacillus protein secretion: an unfolding story. Trends Microbiol 16:73–79

    Article  PubMed  CAS  Google Scholar 

  26. Hatada Y, Hidaka Y, Nogi Y, Uchimura K, Katayama K, Li Z, Akita M, Ohta Y, Goda S, Ito H, Matsui H, Ito S, Horikoshi K (2004) Hyper-production of an isomalto-dextranase of an Arthrobacter sp. by a proteases-deficient Bacillus subtilis: sequencing, properties, and crystallization of the recombinant enzyme. Appl Microbiol Biotechnol 65:583–592

    PubMed  CAS  Google Scholar 

  27. Heng C, Chen ZJ, Du LX, Lu FP (2005) Expression and secretion of an acid-stable alpha-amylase gene in Bacillus subtilis by SacB promoter and signal peptide. Biotechnol Lett 27:1731–1736

    Article  PubMed  CAS  Google Scholar 

  28. Holland IB, Schmitt L, Young J (2005) Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol 22:29–39

    Article  PubMed  CAS  Google Scholar 

  29. Hunt JF, Weinkauf S, Henry L, Fak JJ, McNicholas P, Oliver DB, Deisenhofer J (2002) Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297:2018–2026

    Article  PubMed  CAS  Google Scholar 

  30. Hyyrylainen HL, Bolhuis A, Darmon E, Muukkonen L, Koski P, Vitikainen M, Sarvas M, Pragal Z, Bron S, van Dijl JM, Kontinen VP (2001) A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol 41:1159–1172

    Article  PubMed  CAS  Google Scholar 

  31. Jacobs M, Andersen JB, Kontinen V, Sarvas M (1993) Bacillus subtilis Prsa is required In vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without prosequences. Mol Microbiol 8:957–966

    Article  PubMed  CAS  Google Scholar 

  32. Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Kakeshita H, Kageyama Y, Ara K, Ozaki K, Nakamura K (2010) Enhanced extracellular production of heterologous proteins in Bacillus subtilis by deleting the C-terminal region of the SecA secretory machinery. Mol Biotechnol 46:320

    Article  CAS  Google Scholar 

  34. Kim DY, Kim DR, Ha SC, Lokanath NK, Lee CJ, Hwang HY, Kim KK (2003) Crystal structure of the protease domain of a heat-shock protein HtrA from Thermotoga maritima. J Biol Chem 278:6543–6551

    Article  PubMed  CAS  Google Scholar 

  35. Kim DY, Kim KK (2005) Structure and function of HtrA family proteins, the key players in protein quality control. J Biochem Mol Biol 38:266–274

    Article  PubMed  CAS  Google Scholar 

  36. Kim DY, Kwon E, Shin YK, Kweon DH, Kim KK (2008) The mechanism of temperature-induced bacterial HtrA activation. J Mol Biol 377:410–420

    Article  PubMed  CAS  Google Scholar 

  37. Kontinen VP, Sarvas M (1993) The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol 8:727–737

    Article  PubMed  CAS  Google Scholar 

  38. Kouwen TRHM, Dubois JYF, Freudl R, Quax WJ, van Dijl JM (2008) Modulation of thiol-disulfide oxidoreductases for increased production of disulfide-bond-containing proteins in Bacillus subtilis. Appl Environ Microbiol 74:7536–7545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Kouwen TRHM, van Dijl JM (2009) Applications of thiol-disulfide oxidoreductases for optimized in vivo production of functionally active proteins in Bacillus. Appl Microbiol Biotechnol 85:45–52

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Kramer G, Boehringer D, Ban N, Bukau B (2009) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16:589–597

    Article  PubMed  CAS  Google Scholar 

  41. Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, Becher D, van Dijl JM (2013) Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis. J Proteome Res 12:4101–4110

    Article  PubMed  CAS  Google Scholar 

  42. Krojer T, Sawa J, Huber R, Clausen T (2010) HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues. Nat Struct Mol Biol 17:U844–U894

    Article  Google Scholar 

  43. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Cummings NJ, Daniel RA, Denizot F, Devine KM, Dusterhoft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Henaut A, Hilbert H, Holsappel S, Hosono S, Hullo MF, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, KlaerrBlanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauel C, Medigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, OReilly M, Ogawa K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Portetelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tanaka T, Terpstra P, Tognoni A, Tosato V, Uchiyama S, Vandenbol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler E, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa H, Danchin A (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  PubMed  CAS  Google Scholar 

  44. Lam KH, Chow KC, Wong WK (1998) Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. J Biotechnol 63:167–177

    Article  PubMed  CAS  Google Scholar 

  45. Lamonica JM, Wagner MA, Eschenbrenner M, Williams LE, Miller TL, Patra G, DelVecchio VG (2005) Comparative secretome analyses of three Bacillus anthracis strains with variant plasmid contents. Infect Immun 73:3646–3658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Li WF, Zhou XX, Lu P (2004) Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res Microbiol 155:605–610

    Article  PubMed  CAS  Google Scholar 

  47. Lu Y, Lin Q, Wang J, Wu Y, Bao W, Lv F, Lu Z (2010) Overexpression and characterization in Bacillus subtilis of a positionally nonspecific lipase from Proteus vulgaris. J Ind Microbiol Biotechnol 37:919–925

    Article  PubMed  CAS  Google Scholar 

  48. Malten M, Nahrstedt H, Meinhardt F, Jahn D (2005) Coexpression of the type I signal peptidase gene sipM increases recombinant protein production and export in Bacillus megaterium MS941. Biotechnol Bioen 91:616–621

    Article  CAS  Google Scholar 

  49. Meima R, Eschevins C, Fillinger S, Bolhuis A, Hamoen LW, Dorenbos R, Quax WJ, van Dijl JM, Provvedi R, Chen I, Dubnau D, Bron S (2002) The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development. J Biol Chem 277:6994–7001

    Article  PubMed  CAS  Google Scholar 

  50. Mulder KC, Bandola J, Schumann W (2013) Construction of an artificial secYEG operon allowing high level secretion of alpha-amylase. Protein Expr Purif 89:92–96

    Article  PubMed  CAS  Google Scholar 

  51. Muller JP, Ozegowski J, Vettermann S, Swaving J, Van Wely KH, Driessen AJ (2000) Interaction of Bacillus subtilis CsaA with SecA and precursor proteins. Biochem J 348(Pt 2):367–373

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Nakamura K, Imai Y, Nakamura A, Yamane K (1992) Small cytoplasmic RNA of Bacillus subtilis-functional-relationship with human signal recognition particle 7 s RNA and Escherichia coli 4.5 s RNA. J Bacteriol 174:2185–2192

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Nakamura K, Yahagi S, Yamazaki T, Yamane K (1999) Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J Biol Chem 274:13569–13576

    Article  PubMed  CAS  Google Scholar 

  54. Nam SE, Kim AC, Paetzel M (2012) Crystal structure of Bacillus subtilis signal peptide peptidase A. J Mol Biol 419:347–358

    Article  PubMed  CAS  Google Scholar 

  55. Nielsen H, Engelbrecht J, Brunak S, vonHeijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  56. Nijeholt JALA, Driessen AJM (2012) The bacterial Sec-translocase: structure and mechanism. Philos T R Soc B 367:1016–1028

    Article  Google Scholar 

  57. Noone D, Howell A, Collery R, Devine KM (2001) YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J Bacteriol 183:654–663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Oguro A, Kakeshita H, Honda K, Takamatsu H, Nakamura K, Yamane K (1995) srb: a Bacillus subtilis gene encoding a homologue of the alpha-subunit of the mammalian signal recognition particle receptor. DNA Res 2:95–100

    Article  PubMed  CAS  Google Scholar 

  59. Olmos-Soto J, Contreras-Flores R (2003) Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis. Appl Microbiol Biotechnol 62:369–373

    Article  PubMed  CAS  Google Scholar 

  60. Paetzel M, Dalbey RE, Strynadka NC (1998) Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 396:186–190

    Article  PubMed  CAS  Google Scholar 

  61. Paetzel M, Dalbey RE, Strynadka NCJ (2002) Crystal structure of a bacterial signal peptidase apoenzyme—implications for signal peptide binding and the Ser-Lys dyad mechanism. J Biol Chem 277:9512–9519

    Article  PubMed  CAS  Google Scholar 

  62. Phan TT, Nguyen HD, Schumann W (2013) Construction of a 5’-controllable stabilizing element (CoSE) for over-production of heterologous proteins at high levels in Bacillus subtilis. J Biotechnol 168:32–39

    Article  PubMed  CAS  Google Scholar 

  63. Pohl S, Bhavsar G, Hulme J, Bloor AE, Misirli G, Leckenby MW, Radford DS, Smith W, Wipat A, Williamson ED, Harwood CR, Cranenburgh RM (2013) Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins. Proteomics 13:3298–3308

    Article  PubMed  CAS  Google Scholar 

  64. Pohl S, Harwood CR (2010) Heterologous protein secretion by Bacillus species from the cradle to the grave. Adv Appl Microbiol 73:1–25

    Article  PubMed  Google Scholar 

  65. Power PM, Jones RA, Beacham IR, Bucholtz C, Jennings MP (2004) Whole genome analysis reveals a high incidence of non-optimal codons in secretory signal sequences of Escherichia coli. Biochem Biophys Res Commun 322:1038–1044

    Article  PubMed  CAS  Google Scholar 

  66. Radeck J, Kraft K, Bartels J, Cikovic T, Durr F, Emenegger J, Kelterborn S, Sauer C, Fritz G, Gebhard S, Mascher T (2013) The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J Biol Eng 7(1):29

    Article  PubMed  Google Scholar 

  67. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jorgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5(10):R77

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sarvas M, Harwood CR, Bron S, van Dijl JM (2004) Post-translocational folding of secretory proteins in Gram-positive bacteria. Bba-Mol Cell Res 1694:311–327

    CAS  Google Scholar 

  69. Schumann W (2007) Production of recombinant proteins in Bacillus subtilis. Adv Appl Microbiol 62:137–189

    Article  PubMed  CAS  Google Scholar 

  70. Stephenson K, Harwood CR (1998) Influence of a cell-wall-associated protease on production of alpha-amylase by Bacillus subtilis. Appl Environ Microbiol 64:2875–2881

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Tjalsma H, Antelmann H, Jongbloed JDH, Braun PG, Darmon E, Dorenbos R, Dubois JYF, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM (2004) Proteomics of protein secretion by Bacillus subtilis: Separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68:207–233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Mol Biol Rev 64:515–547

    Article  CAS  Google Scholar 

  73. Tjalsma H, van den Dolder J, Meijer WJJ, Venema G, Bron S, van Dijl JM (1999) The plasmid-encoded signal peptidase SipP can functionally replace the major signal peptidases SipS and SipT of Bacillus subtilis. J Bacteriol 181:2448–2454

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Tjalsma H, van Dijl JM (2005) Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics 5:4472–4482

    Article  PubMed  CAS  Google Scholar 

  75. Trip H, van der Veek PJ, Renniers TC, Meima R, Sagt CM, Mohrmann L, Kuipers OP (2011) A novel screening system for secretion of heterologous proteins in Bacillus subtilis. Microb Biotechnol 4:673–682

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. van Dijl JM, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact 12:3

    Article  PubMed  PubMed Central  Google Scholar 

  77. van Roosmalen ML, Geukens N, Jongbloed JD, Tjalsma H, Dubois JY, Bron S, van Dijl JM, Anne J (2004) Type I signal peptidases of Gram-positive bacteria. Biochim Biophys Acta 1694:279–297

    Article  PubMed  Google Scholar 

  78. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microb Biotech 7:204–211

    Article  CAS  Google Scholar 

  79. Vitikainen M, Hyyrylainen HL, Kivimaki A, Kontinen VP, Sarvas M (2005) Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation. J Appl Microbiol 99:363–375

    Article  PubMed  CAS  Google Scholar 

  80. Vitikainen M, Pummi T, Airaksinen U, Wahlstrom E, Wu HY, Sarvas M, Kontinen VP (2001) Quantitation of the capacity of the secretion apparatus and requirement for PrsA in growth and secretion of alpha-amylase in Bacillus subtilis. J Bacteriol 183:1881–1890

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Voigt B (2006) The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 6:1704–1705

    Article  CAS  Google Scholar 

  82. Voigt B, Antelmann H, Albrecht D, Ehrenreich A, Maurer KH, Evers S, Gottschalk G, van Dijl JM, Schweder T, Hecker M (2009) Cell physiology and protein secretion of Bacillus licheniformis compared to Bacillus subtilis. J Mol Microbial Biotechnol 16:53–68

    Article  CAS  Google Scholar 

  83. Westers L, Dijkstra DS, Westers H, van Dijl JM, Quax WJ (2006) Secretion of functional human interleukin-3 from Bacillus subtilis. J Biotechnol 123:211–224

    Article  PubMed  CAS  Google Scholar 

  84. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Bba-Mol Cell Res 1694:299–310

    CAS  Google Scholar 

  85. Williams RC, Rees ML, Jacobs MF, Pragai Z, Thwaite JE, Baillie LW, Emmerson PT, Harwood CR (2003) Production of Bacillus anthracis protective antigen is dependent on the extracellular chaperone, PrsA. J Biol Chem 278:18056–18062

    Article  PubMed  CAS  Google Scholar 

  86. Wilson DN, Beckmann R (2011) The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr Opin Struc Biol 21:274–282

    Article  CAS  Google Scholar 

  87. Wu SC, Ye R, Wu XC, Ng SC, Wong SL (1998) Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. J Bacteriol 180:2830–2835

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Wu SC, Yeung JC, Duan Y, Ye R, Szarka SJ, Habibi HR, Wong SL (2002) Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: effects of molecular chaperones and a wall-bound protease on antibody fragment production. Appl Environ Microbiol 68:3261–3269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Yen MR, Harley KT, Tseng YH, Saier MH Jr (2001) Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiol Lett 204:223–231

    Article  PubMed  CAS  Google Scholar 

  90. Yuan JJ, Zweers JC, van Dijl JM, Dalbey RE (2010) Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 67:179–199

    Article  PubMed  CAS  Google Scholar 

  91. Zalucki YM, Beacham IR, Jennings MP (2009) Biased codon usage in signal peptides: a role in protein export. Trends Microbiol 17:146–150

    Article  PubMed  CAS  Google Scholar 

  92. Zalucki YM, Gittins KL, Jennings MP (2008) Secretory signal sequence non-optimal codons are required for expression and export of beta-lactamase. Biochem Biophys Res Commun 366:135–141

    Article  PubMed  CAS  Google Scholar 

  93. Zalucki YM, Jennings MP (2007) Experimental confirmation of a key role for non-optimal codons in protein export. Biochem Biophys Res Commun 355:143–148

    Article  PubMed  CAS  Google Scholar 

  94. Zanen G, Antelmann H, Westers H, Hecker M, van Dijl JM, Quax WJ (2004) FlhF, the third signal recognition particle-GTPase of Bacillus subtilis, is dispensable for protein secretion. J Bacteriol 186:5956–5960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Zanen G, Houben ENG, Meima R, Tjalsma H, Jongbloed JDH, Westers H, Oudega B, Luirink J, van Dijl JM, Quax WJ (2005) Signal peptide hydrophobicity is critical for early stages in protein export by Bacillus subtilis. FEBS J 272:4617–4630

    Article  PubMed  CAS  Google Scholar 

  96. Zhang C, Tao T, Ying Q, Zhang D, Lu F, Bie X, Lu Z (2012) Extracellular production of lipoxygenase from Anabaena sp. PCC 7120 in Bacillus subtilis and its effect on wheat protein. Appl Microbiol Biotechnol 94:949–958

    Article  PubMed  CAS  Google Scholar 

  97. Zhang G, Ignatova Z (2011) Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr Opin Struc Biol 21:25–31

    Article  Google Scholar 

  98. Zhang J, Kang Z, Ling Z, Cao W, Liu L, Wang M, Du G, Chen J (2013) High-level extracellular production of alkaline polygalacturonate lyase in Bacillus subtilis with optimized regulatory elements. Bioresour Technol 146:543–548

    Article  PubMed  CAS  Google Scholar 

  99. Zhang XZ, Cui ZL, Hong Q, Li SP (2005) High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl Environ Microbiol 71:4101–4103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We appreciate Professor Byong Lee at Jiangnan University for his discussion and revision. This work was financially supported by the National High Technology Research and Development Program of China (863 Program, 2011AA100905), Program for Changjiang Scholars and Innovative Research Team in University (no. IRT1135), the Natural Science Foundation of Jiangsu Province (BK20141107), China Postdoctoral Science Foundation ((2013M540414), the 111 Project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Kang or Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Z., Yang, S., Du, G. et al. Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J Ind Microbiol Biotechnol 41, 1599–1607 (2014). https://doi.org/10.1007/s10295-014-1506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1506-4

Keywords

Navigation