Skip to main content
Log in

Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Due to the lack of an outer membrane, Gram-positive bacteria (e.g., Bacillus species) are considered as promising host organisms for the secretory production of biotechnologically relevant heterologous proteins. However, the yields of the desired target proteins were often reported to be disappointingly low. Here, we used saturation mutagenesis of the positively charged N-domain (positions 2–7) of the signal peptide of the Bacillus subtilis α-amylase (AmyE) as a novel approach for the improvement of the secretion of a heterologous model protein, cutinase from Fusarium solani pisi, by the general secretory pathway of B. subtilis. Automated high-throughput screening of the resulting signal peptide libraries allowed for the identification of four single point mutations that resulted in significantly increased cutinase amounts, three of which surprisingly reduced the net charge of the N-domain from +3 to +2. Characterization of the effects of the identified mutations on protein synthesis and export kinetics by pulse-chase analyses indicates that an optimal balance between biosynthesis and the flow of the target protein through all stages of the B. subtilis secretion pathway is of crucial importance with respect to yield and quality of secreted heterologous proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Airaksinen A, Hovi T (1998) Modified base compositions at degenerate positions of a mutagenic oligonucleotide enhance randomness in site-saturation mutagenesis. Nucleic Acids Res 26:576–581

    Article  CAS  Google Scholar 

  • Akita M, Sasaki S, Matsuyama SI, Mizushima S (1990) SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. J Biol Chem 265:8164–8169

    CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795

    Article  CAS  Google Scholar 

  • Borchert TV, Nagarajan V (1991) Effect of signal sequence alterations on export of levansucrase in Bacillus subtilis. J Bacteriol 173:276–282

    CAS  Google Scholar 

  • Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T (2006) Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. J Mol Biol 362:393–402

    Article  CAS  Google Scholar 

  • Carvalho CML, Aires-Barros MR, Cabral JM (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66:17–34

    Article  CAS  Google Scholar 

  • Chen M, Nagarajan V (1994) Effect of alteration of charged residues at the N-termini of signal peptides on protein export in Bacillus subtilis. J Bacteriol 176:5796–5801

    CAS  Google Scholar 

  • Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM (2002) A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 184:5661–5671

    Article  CAS  Google Scholar 

  • Eggert T, Brockmeier U, Dröge MJ, Quax WJ, Jaeger KE (2003) Extracellular lipases from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiol Lett 225:319–324

    Article  CAS  Google Scholar 

  • Faß SH, Engels JW (1996) Influence of specific signal peptide mutations on the expression and secretion of the alpha-amylase inhibitor tendamistat in Streptomyces lividans. J Biol Chem 271:15244–15252

    Google Scholar 

  • Harwood CR, Cranenburgh R (2008) Bacillus protein secretion: an unfolding story. Trends Microbiol 16:73–79

    CAS  Google Scholar 

  • Hemilä H, Pakkanen R, Heikinheimo R, Palva ET, Palva I (1992) Expression of the Erwinia carotovora polygalacturonase-encoding gene in Bacillus subtilis: role of the signal peptide fusions on production of a heterologous protein. Gene 116:27–33

    Article  Google Scholar 

  • Jaeger KE, Eggert T, Eippner A, Reetz MT (2001) Directed evolution and the creation of enantioselective biocatalysts. Appl Microbiol Biotechnol 55:519–530

    Article  CAS  Google Scholar 

  • Kebir MO, Kendall DA (2002) SecA specificity for different signal peptides. Biochemistry 41:5573–5580

    Article  CAS  Google Scholar 

  • Kontinen VP, Sarvas M (1993) The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol 8:727–737

    Article  CAS  Google Scholar 

  • Kunst F, Rapoport G (1995) Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177:2403–2407

    CAS  Google Scholar 

  • Lehnhardt S, Pollitt S, Inouye M (1987) The differential effect on two hybrid proteins of deletion mutations within the hydrophobic region of the Escherichia coli OmpA signal peptide. J Biol Chem 262:1716–1719

    CAS  Google Scholar 

  • Lehnhardt S, Pollit NS, Goldstein J, Inouye M (1988) Modulation of the effects of mutations in the basic region of the OmpA signal peptide by the mature portion of the protein. J Biol Chem 263:10300–10303

    CAS  Google Scholar 

  • Leloup L, Driessen AJM, Freudl R, Chambert R, Petit-Glatron MF (1999) Differential dependence of levansucrase and α-amylase secretion on SecA (Div) during the exponential phase of growth of Bacillus subtilis. J Bacteriol 181:1820–1826

    CAS  Google Scholar 

  • Martinez C, De Geus P, Lauwereys M, Matthyssens G, Cambillau C (1992) Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356:615–618

    Article  CAS  Google Scholar 

  • Mathiesen G, Sveen A, Piard JC, Axelsson L, Eijsink VG (2008) Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides. J Appl Microbiol 105:215–226

    Article  CAS  Google Scholar 

  • Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VGH (2009) Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFSI. BMC Genomics 10:425

    Article  CAS  Google Scholar 

  • Monroy-Lagos O, Soberon X, Gaytan P, Osuna J (2006) Improvement of an unusual twin-arginine transporter leader peptide by a codon-based randomization approach. Appl Environ Microbiol 72:3797–3801

    Article  CAS  Google Scholar 

  • Nakamura K, Itoh Y, Yamane K (1988) Enhanced secretion of ß-lactamase on structural modification of the Bacillus subtilis alpha-amylase signal peptide. J Biochem (Tokyo) 104:265–269

    CAS  Google Scholar 

  • Nakamura K, Fujita Y, Itoh Y, Yamane K (1989) Modification of length, hydrophobic properties and electric charge of Bacillus subtilis α-amylase signal peptide and their different effects on the production of secretory proteins in B. subtilis and Escherichia coli. Mol Gen Genet 216:1–9

    Article  CAS  Google Scholar 

  • Natale P, Brüser T, Driessen AJM (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochim Biophys Acta 1778:1735–1756

    Article  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  • Peterson JH, Woolhead CA, Bernstein HD (2003) Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle. J Biol Chem 278:46155–46162

    Article  CAS  Google Scholar 

  • Saunders CW, Pedroni JA, Monahan PM (1991) Optimization of the signal sequence cleavage site for secretion from Bacillus subtilis of a 34-amino acid fragment of human parathyroid hormone. Gene 102:277–282

    Article  CAS  Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  CAS  Google Scholar 

  • van Dijl JM, de Jong A, Smith H, Bron S, Venema G (1991) Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis. J Gen Microbiol 137:2073–2083

    Google Scholar 

  • van Wely KHM, Swaving J, Freudl R, Driessen AJM (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454

    Article  Google Scholar 

  • Vasantha N, Balakrishnan R, Kaur S, Jayaraman K (1980) Biosynthesis of polymyxin by Bacillus polymyxa. I. The status of the biosynthetic multienzyme complex during active antibiotic synthesis and sporulation. Arch Biochem Biophys 200:40–44

    Article  CAS  Google Scholar 

  • von Heijne G (1990) The signal peptide. J Membr Biol 115:195–201

    Article  Google Scholar 

  • Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H (2009) Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology (UK) 155:741–750

    Article  CAS  Google Scholar 

  • Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670

    CAS  Google Scholar 

  • Zanen G, Houben EN, Meima R, Tjalsma H, Jongbloed JD, Westers H, Oudega B, Luirink J, van Dijl JM, Quax WJ (2005) Signal peptide hydrophobicity is critical for early stages in protein export by Bacillus subtilis. FEBS J 272:4617–4630

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to H. Sahm, K.-E. Jaeger, and M. Bott for their support. M.C. was in part funded by the Graduiertenkolleg GRK 57/3-03 “Molekulare Physiologie: Stoff- und Energieumwandlung”. U.B was a recipient of a scholarship from the European Graduate College 795 entitled “Regulatory Circuits in Cellular Systems: Fundamentals and Biotechnological Applications” funded by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Freudl.

Additional information

Michael Caspers and Ulf Brockmeier contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caspers, M., Brockmeier, U., Degering, C. et al. Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide. Appl Microbiol Biotechnol 86, 1877–1885 (2010). https://doi.org/10.1007/s00253-009-2405-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2405-x

Keywords

Navigation