Skip to main content
Log in

Versatile Expression and Secretion Vectors for Bacillus subtilis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Most expression systems are based on Escherichia coli as the host strain because of the large availability of all kinds of vector plasmids. However, aside from the obvious advantages of E. coli systems, serious problems can occur during the process of heterologous gene expression and purification. Therefore, low expression rates, formation of inclusion bodies, improper protein-folding, and/or toxicity problems might enforce changing the expression host. Here we describe the construction of two new vectors, pBSMuL1 and pBSMuL2, for overexpression and secretion of heterologous proteins in Bacillus subtilis as an alternative expression host. The new plasmids combine several advantages in comparison to available Bacillus expression systems: an appropriate multiple cloning site consisting of 13 unique restriction sites, one (pBSMuL1) or two (pBSMuL2) strong constitutive promoters, a high efficient signal sequence for protein secretion, and the possibility to express proteins as His-tagged fusions for easy detection and purification. We have demonstrated the applicability of the novel vector plasmids for the production and purification of the heterologous cutinase from Fusarium solani pisi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  1. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  PubMed  Google Scholar 

  2. Bron S, Luxen E (1985) Segregational instability of pUB110-derived recombinant plasmids in Bacillus subtilis. Plasmid 14: 235–244

    Article  CAS  PubMed  Google Scholar 

  3. Dartois V, Coppée JY, Colson C, Baulard A (1994) Genetic analysis and overexpression of lipolytic activity in Bacillus subtilis. Appl Environ Microbiol 60:1670–1673

    CAS  PubMed  Google Scholar 

  4. Eggert T, Brockmeier U, Dröge MJ, Quax WJ, Jaeger KE (2003) Extracellular lipases from Bacillus subtilis: Regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiol Lett 225:319–324

    Article  CAS  PubMed  Google Scholar 

  5. Egmond MR, de Vlieg J (2000) Fusarium solani pisi cutinase. Biochimie 82:1015–1021

    Article  CAS  PubMed  Google Scholar 

  6. Jongbloed JDH, Antelmann H, Hecker M, Nijland R, Bron S, Airaksinen U, et al. (2002) Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem 277:44068–44078

    Article  CAS  PubMed  Google Scholar 

  7. Lam KH, Chow KC, Wong WK (1998) Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. J Biotechnol 63:167–177

    Article  CAS  PubMed  Google Scholar 

  8. Nagarajan V, Albertson H, Chen M, Ribbe J (1992) Modular expression and secretion vectors for Bacillus subtilis. Gene 114:121–126

    Article  CAS  PubMed  Google Scholar 

  9. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  CAS  PubMed  Google Scholar 

  10. Schmid RD, Alberghina L, Verger R (1991) Lipases-structure, function and genetic engineering. GBF Monographs VCH Weinheim 16:243–251

    Google Scholar 

  11. Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, van DijL JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: A genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    CAS  PubMed  Google Scholar 

  12. van der Vossen JMBM, van der Lelie D, Venema G (1987) Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl Environ Microbiol 53:2452–2457

    PubMed  Google Scholar 

  13. van Wely KHM, Swaving J, Freudl R, Driessen AJM (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454

    Article  PubMed  Google Scholar 

  14. Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670

    CAS  PubMed  Google Scholar 

  15. Zyprian E, Matzura H (1986). Characterization of signals promoting gene expression on the Staphylococcus aureus plasmid pUB110 and development of a gram-positive expression system. DNA 5:219–225

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One author (U. B.) was supported by a scholarship from the European Graduate College 795 entitled Regulatory Circuits in Cellular Systems: Fundamentals and Biotechnological Applications, which was funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Eggert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brockmeier, U., Wendorff, M. & Eggert, T. Versatile Expression and Secretion Vectors for Bacillus subtilis. Curr Microbiol 52, 143–148 (2006). https://doi.org/10.1007/s00284-005-0231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-0231-7

Keywords

Navigation