Skip to main content
Log in

Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Protein quality control is vital for all living cells and sophisticated molecular mechanisms have evolved to prevent the excessive accumulation of unfolded proteins. High-temperature requirement A (HtrA) proteases have been identified as important ATP-independent quality-control factors in most species. HtrA proteins harbor a serine-protease domain and at least one peptide-binding PDZ domain to ensure efficient removal of misfolded or damaged proteins. One distinctive property of HtrAs is their ability to assemble into complex oligomers. Whereas all examined HtrAs are capable of forming pyramidal 3-mers, higher-order complexes consisting of up to 24 molecules have been reported. Tight control of chaperone and protease function is of pivotal importance in preventing deleterious HtrA-protease activity. In recent years, structural biology provided detailed insights into the molecular basis of the regulatory mechanisms, which include unique intramolecular allosteric signaling cascades and the dynamic switching of oligomeric states of HtrA proteins. Based on these results, functional models for many family members have been developed. The HtrA protein family represents a remarkable example of how structural and functional diversity is attained from the assembly of simple molecular building blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADAM9:

A disintegrin and metalloproteinase domain-containing 9

FRET:

Förster resonance energy transfer

HtrA:

High-temperature requirement A

OMP:

Outer membrane protein

PDZ:

Postsynaptic density of 95 kDa (PSD-95), discs large (DLG1), and zonula occludens 1 (ZO-1)

rmsd:

Root-mean-square deviation

SEC:

Size-exclusion chromatography

References

  1. Page MJ, Di Cera E (2008) Evolution of peptidase diversity. J Biol Chem 283:30010–30014

    Article  PubMed  CAS  Google Scholar 

  2. Clausen T, Kaiser M, Huber R, Ehrmann M (2011) HtrA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12:152–162

    Article  PubMed  CAS  Google Scholar 

  3. Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325

    Article  PubMed  CAS  Google Scholar 

  4. Skorko-Glonek J, Zurawa D, Kuczwara E, Wozniak M, Wypych Z, Lipinska B (1999) The Escherichia coli heat shock protease HtrA participates in defense against oxidative stress. Mol Gen Genet 262:342–350

    Article  PubMed  CAS  Google Scholar 

  5. Önder Ö, Turkarslan S, Sun D, Daldal F (2008) Overproduction or absence of the periplasmic protease DegP severely compromises bacterial growth in the absence of the dithiol: disulfide oxidoreductase DsbA. Mol Cell Proteomics 7:875–890

    Article  PubMed  Google Scholar 

  6. Skorko-Glonek J, Wawrzynow A, Krzewski K, Kurpierz K, Lipinska B (1995) Site-directed mutagenesis of the HtrA (DegP) serine protease, whose proteolytic activity is indispensable for Escherichia coli survival at elevated temperatures. Gene 163:47–52

    Article  PubMed  CAS  Google Scholar 

  7. Alba BM, Gross CA (2004) Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52:613–619

    Article  PubMed  CAS  Google Scholar 

  8. Ingmer H, Brøndsted L (2009) Proteases in bacterial pathogenesis. Res Microbiol 160:704–710

    Article  PubMed  CAS  Google Scholar 

  9. Wrase R, Scott H, Hilgenfeld R, Hansen G (2011) The Legionella HtrA homologue DegQ is a self-compartmentizing protease that forms large 12-meric assemblies. Proc Natl Acad Sci USA 108:10490–10495

    Article  PubMed  CAS  Google Scholar 

  10. Bai XC, Pan XJ, Wang XJ, Ye YY, Chang LF, Leng D, Lei J, Sui SF (2011) Characterization of the structure and function of Escherichia coli DegQ as a representative of the DegQ-like proteases of bacterial HtrA family proteins. Structure 19:1328–1337

    Article  PubMed  CAS  Google Scholar 

  11. Kim S, Grant RA, Sauer RT (2011) Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages. Cell 145:67–78

    Article  PubMed  CAS  Google Scholar 

  12. Kley J, Schmidt B, Boyanov B, Stolt-Bergner PC, Kirk R, Ehrmann M, Knopf RR, Naveh L, Adam Z, Clausen T (2011) Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure. Nat Struct Mol Biol 18:728–731

    Article  PubMed  CAS  Google Scholar 

  13. Sawa J, Malet H, Krojer T, Canellas F, Ehrmann M, Clausen T (2011) Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope. J Biol Chem 286:30680–30690

    Article  PubMed  CAS  Google Scholar 

  14. Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T (2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416:455–459

    Article  PubMed  CAS  Google Scholar 

  15. Krojer T, Sawa J, Schäfer E, Saibil HR, Ehrmann M, Clausen T (2008) Structural basis for the regulated protease and chaperone function of DegP. Nature 453:885–890

    Article  PubMed  CAS  Google Scholar 

  16. Jiang J, Zhang X, Chen Y, Wu Y, Zhou ZH, Chang Z, Sui SF (2008) Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc Natl Acad Sci USA 105:11939–11944

    Article  PubMed  CAS  Google Scholar 

  17. Malet H, Canellas F, Sawa J, Yan J, Thalassinos K, Ehrmann M, Clausen T, Saibil HR (2012) Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ. Nat Struct Mol Biol 19:152–157

    Article  PubMed  CAS  Google Scholar 

  18. Shen QT, Bai XC, Chang LF, Wu Y, Wang HW, Sui SF (2009) Bowl-shaped oligomeric structures on membranes as DegP’s new functional forms in protein quality control. Proc Natl Acad Sci USA 106:4858–4863

    Article  PubMed  CAS  Google Scholar 

  19. Wilken C, Kitzing K, Kurzbauer R, Ehrmann M, Clausen T (2004) Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease. Cell 117:483–494

    Article  PubMed  CAS  Google Scholar 

  20. Mohamedmohaideen NN, Palaninathan SK, Morin PM, Williams BJ, Braunstein M, Tichy SE, Locker J, Russell DH, Jacobs WR Jr, Sacchettini JC (2008) Structure and function of the virulence-associated high-temperature requirement A of Mycobacterium tuberculosis. Biochemistry 47:6092–6102

    Article  PubMed  CAS  Google Scholar 

  21. Alba BM, Leeds JA, Onufryk C, Lu CZ, Gross CA (2002) DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. Genes Dev 16:2156–2168

    Article  PubMed  CAS  Google Scholar 

  22. Waller PR, Sauer RT (1996) Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. J Bacteriol 178:1146–1153

    PubMed  CAS  Google Scholar 

  23. Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347

    Article  PubMed  CAS  Google Scholar 

  24. Wilson RL, Brown LL, Kirkwood-Watts D, Warren TK, Lund SA, King DS, Jones KF, Hruby DE (2006) Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence. Infect Immun 74:765–768

    Article  PubMed  CAS  Google Scholar 

  25. Stack HM, Sleator RD, Bowers M, Hill C, Gahan CG (2005) Role for HtrA in stress induction and virulence potential in Listeria monocytogenes. Appl Environ Microbiol 71:4241–4247

    Article  PubMed  CAS  Google Scholar 

  26. Rowley G, Stevenson A, Kormanec J, Roberts M (2005) Effect of inactivation of degS on Salmonella enterica serovar typhimurium in vitro and in vivo. Infect Immun 73:459–463

    Article  PubMed  CAS  Google Scholar 

  27. Flannagan RS, Aubert D, Kooi C, Sokol PA, Valvano MA (2007) Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo. Infect Immun 75:1679–1689

    Article  PubMed  CAS  Google Scholar 

  28. Farn J, Roberts M (2004) Effect of inactivation of the HtrA-like serine protease DegQ on the virulence of Salmonella enterica serovar typhimurium in mice. Infect Immun 72:7357–7359

    Article  PubMed  CAS  Google Scholar 

  29. Chitlaru T, Zaide G, Ehrlich S, Inbar I, Cohen O, Shafferman A (2011) HtrA is a major virulence determinant of Bacillus anthracis. Mol Microbiol 81:1542–1559

    Article  PubMed  CAS  Google Scholar 

  30. Raivio TL (2005) Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 56:1119–1128

    Article  PubMed  CAS  Google Scholar 

  31. Walsh NP, Alba BM, Bose B, Gross CA, Sauer RT (2003) OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:61–71

    Article  PubMed  CAS  Google Scholar 

  32. Hasenbein S, Meltzer M, Hauske P, Kaiser M, Huber R, Clausen T, Ehrmann M (2010) Conversion of a regulatory into a degradative protease. J Mol Biol 397:957–966

    Article  PubMed  CAS  Google Scholar 

  33. Sohn J, Grant RA, Sauer RT (2007) Allosteric activation of DegS, a stress sensor PDZ protease. Cell 131:572–583

    Article  PubMed  CAS  Google Scholar 

  34. Chaba R, Alba BM, Guo MS, Sohn J, Ahuja N, Sauer RT, Gross CA (2011) Signal integration by DegS and RseB governs the σE-mediated envelope stress response in Escherichia coli. Proc Natl Acad Sci USA 108:2106–2111

    Article  PubMed  CAS  Google Scholar 

  35. Zeth K (2004) Structural analysis of DegS, a stress sensor of the bacterial periplasm. FEBS Lett 569:351–358

    Article  PubMed  CAS  Google Scholar 

  36. Sohn J, Grant RA, Sauer RT (2010) Allostery is an intrinsic property of the protease domain of DegS: implications for enzyme function and evolution. J Biol Chem 285:34039–34047

    Article  PubMed  CAS  Google Scholar 

  37. Sohn J, Grant RA, Sauer RT (2009) OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism. Structure 17:1411–1421

    Article  PubMed  CAS  Google Scholar 

  38. Hasselblatt H, Kurzbauer R, Wilken C, Krojer T, Sawa J, Kurt J, Kirk R, Hasenbein S, Ehrmann M, Clausen T (2007) Regulation of the σE stress response by DegS: how the PDZ domain keeps the protease inactive in the resting state and allows integration of different OMP-derived stress signals upon folding stress. Genes Dev 21:2659–2670

    Article  PubMed  CAS  Google Scholar 

  39. Lipinska B, Sharma S, Georgopoulos C (1988) Sequence analysis and regulation of the HtrA gene of Escherichia coli: a σ32-independent mechanism of heat-inducible transcription. Nucleic Acids Res 16:10053–10067

    Article  PubMed  CAS  Google Scholar 

  40. Sawa J, Heuck A, Ehrmann M, Clausen T (2010) Molecular transformers in the cell: lessons learned from the DegP protease-chaperone. Curr Opin Struct Biol 20:253–258

    Article  PubMed  CAS  Google Scholar 

  41. Kim KI, Park SC, Kang SH, Cheong GW, Chung CH (1999) Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli. J Mol Biol 294:1363–1374

    Article  PubMed  CAS  Google Scholar 

  42. Krojer T, Sawa J, Huber R, Clausen T (2010) HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues. Nat Struct Mol Biol 17:844–852

    Article  PubMed  CAS  Google Scholar 

  43. Kim S, Sauer RT (2012) Cage assembly of DegP protease is not required for substrate-dependent regulation of proteolytic activity or high-temperature cell survival. Proc Natl Acad Sci USA 109:7263–7268

    Article  PubMed  CAS  Google Scholar 

  44. Jomaa A, Damjanovic D, Leong V, Ghirlando R, Iwanczyk J, Ortega J (2007) The inner cavity of Escherichia coli DegP protein is not essential for molecular chaperone and proteolytic activity. J Bacteriol 189:706–716

    Article  PubMed  CAS  Google Scholar 

  45. Kolmar H, Waller PR, Sauer RT (1996) The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. J Bacteriol 178:5925–5929

    PubMed  CAS  Google Scholar 

  46. Kim DY, Kim KK (2005) Structure and function of HtrA family proteins, the key players in protein quality control. J Biochem Mol Biol 38:266–274

    Article  PubMed  CAS  Google Scholar 

  47. Kim DY, Kim DR, Ha SC, Lokanath NK, Lee CJ, Hwang HY, Kim KK (2003) Crystal structure of the protease domain of a heat-shock protein HtrA from Thermotoga maritima. J Biol Chem 278:6543–6551

    Article  PubMed  CAS  Google Scholar 

  48. Kim DY, Kwon E, Shin YK, Kweon DH, Kim KK (2008) The mechanism of temperature-induced bacterial HtrA activation. J Mol Biol 377:410–420

    Article  PubMed  CAS  Google Scholar 

  49. Fu LM, Fu-Liu CS (2002) Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram-negative bacterial pathogens? Tuberculosis (Edinb) 82:85–90

    Article  CAS  Google Scholar 

  50. Skeiky YA, Lodes MJ, Guderian JA, Mohamath R, Bement T, Alderson MR, Reed SG (1999) Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis. Infect Immun 67:3998–4007

    PubMed  CAS  Google Scholar 

  51. Li W, Srinivasula SM, Chai J, Li P, Wu JW, Zhang Z, Alnemri ES, Shi Y (2002) Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol 9:436–441

    Article  PubMed  CAS  Google Scholar 

  52. Truebestein L, Tennstaedt A, Mönig T, Krojer T, Canellas F, Kaiser M, Clausen T, Ehrmann M (2011) Substrate-induced remodeling of the active site regulates human HtrA1 activity. Nat Struct Mol Biol 18:386–388

    Article  PubMed  CAS  Google Scholar 

  53. Edelman M, Mattoo AK (2008) D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res 98:609–620

    Article  PubMed  CAS  Google Scholar 

  54. Huesgen PF, Schuhmann H, Adamska I (2009) Deg/HtrA proteases as components of a network for photosystem II quality control in chloroplasts and cyanobacteria. Res Microbiol 160:726–732

    Article  PubMed  CAS  Google Scholar 

  55. Campioni M, Severino A, Manente L, Tuduce IL, Toldo S, Caraglia M, Crispi S, Ehrmann M, He X, Maguire J, De Falco M, De Luca A, Shridhar V, Baldi A (2010) The serine protease HtrA1 specifically interacts and degrades the tuberous sclerosis complex 2 protein. Mol Cancer Res 8:1248–1260

    Article  PubMed  CAS  Google Scholar 

  56. Hou J, Clemmons DR, Smeekens S (2005) Expression and characterization of a serine protease that preferentially cleaves insulin-like growth factor binding protein-5. J Cell Biochem 94:470–484

    Article  PubMed  CAS  Google Scholar 

  57. Launay S, Maubert E, Lebeurrier N, Tennstaedt A, Campioni M, Docagne F, Gabriel C, Dauphinot L, Potier MC, Ehrmann M, Baldi A, Vivien D (2008) HtrA1-dependent proteolysis of TGF-β controls both neuronal maturation and developmental survival. Cell Death Differ 15:1408–1416

    Article  PubMed  CAS  Google Scholar 

  58. Oka C, Tsujimoto R, Kajikawa M, Koshiba-Takeuchi K, Ina J, Yano M, Tsuchiya A, Ueta Y, Soma A, Kanda H, Matsumoto M, Kawaichi M (2004) HtrA1 serine protease inhibits signaling mediated by Tgfβ family proteins. Development 131:1041–1053

    Article  PubMed  CAS  Google Scholar 

  59. Grau S, Baldi A, Bussani R, Tian X, Stefanescu R, Przybylski M, Richards P, Jones SA, Shridhar V, Clausen T, Ehrmann M (2005) Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc Natl Acad Sci USA 102:6021–6026

    Article  PubMed  CAS  Google Scholar 

  60. Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, Junker U, Jones SA, Clausen T, Ehrmann M (2006) The role of human HtrA1 in arthritic disease. J Biol Chem 281:6124–6129

    Article  PubMed  CAS  Google Scholar 

  61. An E, Sen S, Park SK, Gordish-Dressman H, Hathout Y (2010) Identification of novel substrates for the serine protease HTRA1 in the human RPE secretome. Investig Ophthalmol Vis Sci 51:3379–3386

    Article  Google Scholar 

  62. Tsuchiya A, Yano M, Tocharus J, Kojima H, Fukumoto M, Kawaichi M, Oka C (2005) Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone 37:323–336

    Article  PubMed  CAS  Google Scholar 

  63. Chien J, Campioni M, Shridhar V, Baldi A (2009) HtrA serine proteases as potential therapeutic targets in cancer. Curr Cancer Drug Targets 9:451–468

    Article  PubMed  CAS  Google Scholar 

  64. Coleman HR, Chan CC, Ferris FL 3rd, Chew EY (2008) Age-related macular degeneration. Lancet 372:1835–1845

    Article  PubMed  CAS  Google Scholar 

  65. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, Ikeda M, Shiota H, Tamura M, Shimoe Y, Hirayama M, Arisato T, Yanagawa S, Tanaka A, Nakano I, Ikeda S, Yoshida Y, Yamamoto T, Ikeuchi T, Kuwano R, Nishizawa M, Tsuji S, Onodera O (2009) Association of HtrA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 360:1729–1739

    Article  PubMed  CAS  Google Scholar 

  66. Milner JM, Patel A, Rowan AD (2008) Emerging roles of serine proteinases in tissue turnover in arthritis. Arthr Rheum 58:3644–3656

    Article  CAS  Google Scholar 

  67. Vande Walle L, Lamkanfi M, Vandenabeele P (2008) The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ 15:453–460

    Article  PubMed  CAS  Google Scholar 

  68. Gray CW, Ward RV, Karran E, Turconi S, Rowles A, Viglienghi D, Southan C, Barton A, Fantom KG, West A, Savopoulos J, Hassan NJ, Clinkenbeard H, Hanning C, Amegadzie B, Davis JB, Dingwall C, Livi GP, Creasy CL (2000) Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem 267:5699–5710

    Article  PubMed  CAS  Google Scholar 

  69. Jin S, Kalkum M, Overholtzer M, Stoffel A, Chait BT, Levine AJ (2003) CIAP1 and the serine protease HTRA2 are involved in a novel p53-dependent apoptosis pathway in mammals. Genes Dev 17:359–367

    Article  PubMed  CAS  Google Scholar 

  70. Martins LM, Turk BE, Cowling V, Borg A, Jarrell ET, Cantley LC, Downward J (2003) Binding specificity and regulation of the serine protease and PDZ domains of HtrA2/Omi. J Biol Chem 278:49417–49427

    Article  PubMed  CAS  Google Scholar 

  71. Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Müller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Krüger R (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14:2099–2111

    Article  PubMed  CAS  Google Scholar 

  72. Lee MS, Jun DH, Hwang CI, Park SS, Kang JJ, Park HS, Kim J, Kim JH, Seo JS, Park WY (2006) Selection of neural differentiation-specific genes by comparing profiles of random differentiation. Stem Cells 24:1946–1955

    Article  PubMed  CAS  Google Scholar 

  73. Huttunen HJ, Guenette SY, Peach C, Greco C, Xia W, Kim DY, Barren C, Tanzi RE, Kovacs DM (2007) HtrA2 regulates beta-amyloid precursor protein (APP) metabolism through endoplasmic reticulum-associated degradation. J Biol Chem 282:28285–28295

    Article  PubMed  CAS  Google Scholar 

  74. Singh N, Kuppili RR, Bose K (2011) The structural basis of mode of activation and functional diversity: a case study with HtrA family of serine proteases. Arch Biochem Biophys 516:85–96

    Article  PubMed  CAS  Google Scholar 

  75. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  PubMed  CAS  Google Scholar 

  76. Jelen F, Oleksy A, Smietana K, Otlewski J (2003) PDZ domains-common players in the cell signaling. Acta Biochim Pol 50:985–1017

    PubMed  CAS  Google Scholar 

  77. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y, Xin X, Chan AC, Seshagiri S, Lasky LA, Sander C, Boone C, Bader GD, Sidhu SS (2008) A specificity map for the PDZ domain family. PLoS Biol 6:e239

    Article  PubMed  Google Scholar 

  78. Lee HJ, Zheng JJ (2010) PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 8:8

    Article  PubMed  Google Scholar 

  79. Krojer T, Pangerl K, Kurt J, Sawa J, Stingl C, Mechtler K, Huber R, Ehrmann M, Clausen T (2008) Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc Natl Acad Sci USA 105:7702–7707

    Article  PubMed  CAS  Google Scholar 

  80. Wang CK, Pan L, Chen J, Zhang M (2011) Extensions of PDZ domains as important structural and functional elements. Protein Cell 1:737–751

    Article  Google Scholar 

  81. Chang BH, Gujral TS, Karp ES, BuKhalid R, Grantcharova VP, MacBeath G (2011) A systematic family-wide investigation reveals that ~ 30 % of mammalian PDZ domains engage in PDZ–PDZ interactions. Chem Biol 18:1143–1152

    Article  PubMed  CAS  Google Scholar 

  82. Fanning AS, Lye MF, Anderson JM, Lavie A (2007) Domain swapping within PDZ2 is responsible for dimerization of ZO proteins. J Biol Chem 282:37710–37716

    Article  PubMed  CAS  Google Scholar 

  83. Sugi T, Oyama T, Muto T, Nakanishi S, Morikawa K, Jingami H (2007) Crystal structures of autoinhibitory PDZ domain of Tamalin: implications for metabotropic glutamate receptor trafficking regulation. EMBO J 26:2192–2205

    Article  PubMed  CAS  Google Scholar 

  84. Im YJ, Park SH, Rho SH, Lee JH, Kang GB, Sheng M, Kim E, Eom SH (2003) Crystal structure of GRIP1 PDZ6-peptide complex reveals the structural basis for class II PDZ target recognition and PDZ domain-mediated multimerization. J Biol Chem 278:8501–8507

    Article  PubMed  CAS  Google Scholar 

  85. Im YJ, Lee JH, Park SH, Park SJ, Rho SH, Kang GB, Kim E, Eom SH (2003) Crystal structure of the Shank PDZ-ligand complex reveals a class I PDZ interaction and a novel PDZ–PDZ dimerization. J Biol Chem 278:48099–48104

    Article  PubMed  CAS  Google Scholar 

  86. Biswas S, Biswas I (2005) Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans. Infect Immun 73:6923–6934

    Article  PubMed  CAS  Google Scholar 

  87. Baud C, Hodak H, Willery E, Drobecq H, Locht C, Jamin M, Jacob-Dubuisson F (2009) Role of DegP for two-partner secretion in Bordetella. Mol Microbiol 74:315–329

    Article  PubMed  CAS  Google Scholar 

  88. Hoy B, Löwer M, Weydig C, Carra G, Tegtmeyer N, Geppert T, Schröder P, Sewald N, Backert S, Schneider G, Wessler S (2010) Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 11:798–804

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sen-Fang Sui and Xiaochen Bai for supplying the atomic coordinates of DegQEc models based on their cryo-EM data. RH is supported by a Chinese Academy of Sciences Visiting Professorship for Senior International Scientists, Grant no. 2010T1S6, by the DFG Cluster of Excellence “Inflammation at Interfaces” (EXC 306), as well as by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, G., Hilgenfeld, R. Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell. Mol. Life Sci. 70, 761–775 (2013). https://doi.org/10.1007/s00018-012-1076-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1076-4

Keywords

Navigation