Skip to main content
Log in

Analysis of SSH library of rice variety Aganni reveals candidate gall midge resistance genes

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The Asian rice gall midge, Orseolia oryzae, is a serious insect pest causing extensive yield loss. Interaction between the gall midge and rice genotypes is known to be on a gene-for-gene basis. Here, we report molecular basis of HR− (hypersensitive reaction—negative) type of resistance in Aganni (an indica rice variety possessing gall midge resistance gene Gm8) through the construction and analysis of a suppressive subtraction hybridization (SSH) cDNA library. In all, 2,800 positive clones were sequenced and analyzed. The high-quality ESTs were assembled into 448 non-redundant gene sequences. Homology search with the NCBI databases, using BlastX and BlastN, revealed that 73% of the clones showed homology to genes with known function and majority of ESTs belonged to the gene ontology category ‘biological process’. Validation of 27 putative candidate gall midge resistance genes through real-time PCR, following gall midge infestation, in contrasting parents and their derived pre-NILs (near isogenic lines) revealed induction of specific genes related to defense and metabolism. Interestingly, four genes, belonging to families of leucine-rich repeat (LRR), heat shock protein (HSP), pathogenesis related protein (PR), and NAC domain-containing protein, implicated in conferring HR+ type of resistance, were found to be up-regulated in Aganni. Two of the reactive oxygen intermediates (ROI)–scavenging-enzyme-coding genes Cytosolic Ascorbate Peroxidase1, 2 (OsAPx1 and OsAPx2) were found up-regulated in Aganni in incompatible interaction possibly suppressing HR. We suggest that Aganni has a deviant form of inducible, salicylic acid (SA)-mediated resistance but without HR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Álvarez C, Ángeles Bermúdez M, Romero LC, Gotor C, García I (2012) Cysteine homeostasis plays an essential role in plant immunity. New Phytol 193:165–177

    Article  PubMed  Google Scholar 

  • Ambrosone A, Batelli G, Nurcato R, Aurilia V, Punzo P, Bangarusamy DK, Ruberti I, Sassi M, Leone A, Costa A, Grillo S (2015) The Arabidopis RNA-binding protein AtRGGA regulates tolerance to salt and drought stress. Plant Physiol 168:292–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barajas D, Kovalev N, Qin J, Nagy PD (2015) Novel mechanism of regulation of tomato bushy stunt virus replication by cellular WW-domain proteins. J Virol 89:2064–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS–LRR proteins and their partners. Curr Opin Plant Biol 7:391–399

    Article  CAS  PubMed  Google Scholar 

  • Bentur JS, Kalode MB (1996) Hypersensitive reaction and induced resistance in rice against Asian rice gall midge, Orseolia oryzae. Entomol Exp Appl 78:77–81

    Article  Google Scholar 

  • Bentur JS, Pasalu IC, Sarma NP, Rao PU, Mishra B (2003) Gall midge resistance in rice. Directorate of Rice Research, Hyderabad

    Google Scholar 

  • Bissoli G, Niñoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, Garcia-Sanchez MJ, Fernandez JA, Mulet JM, Serrano R (2012) Peptidyl‐prolyl cis‐trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopis. Plant J 70:704–716

    Article  CAS  PubMed  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso DC, Martinati JC, Giachetto PF, Vidal RO, Carazzolle MF, Padilha L, Filho OG, Maluf MP (2014) Large-scale analysis of differential gene expression in coffee genotypes and susceptible to leaf miner—toward the identification of candidate genes for marker assisted-selection. BMC Genomics 15:66. doi:10.1186/1471-2164-15-66

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassone BJ, Chen Z, Chiera J, Stewart LR, Redinbaugh MG (2014) Responses of highly resistant and susceptible maize to vascular puncture inoculation with Maize dwarf mosaic virus. Physiol Mol Plant Pathol 86:19–27

    Article  CAS  Google Scholar 

  • Chandler JW (2015) Auxin response factors. Plant Cell Environ. doi:10.1111/pce.12662

    PubMed  Google Scholar 

  • Chen N, Goodwin PH, Hsiang T (2003) The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J Exp Bot 54:2449–2456

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wang L, Que ZQ, Pan RQ, Pan QH (2005) Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No. 1. Theor Appl Genet 111:1563–1570

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chen W, Zhou J, He H, Chen L, Chen H, Deng XW (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 193:8–17

    Article  PubMed  Google Scholar 

  • Divya D, Himabindu K, Nair S, Bentur JS (2015) Cloning of a gene encoding LRR protein and its validation as candidate gall midge resistance gene, Gm4, in rice. Euphytica 203:185–195

    Article  CAS  Google Scholar 

  • Do H, Kim IS, Kim YS, Shin SY, Kim JJ, Mok JE, Park SI, Wi AR, Park H, Lee JH, Yoon HS, Kim HW (2014) Purification, characterization and preliminary X-ray crystallographic studies of monodehydroascorbate reductase from Oryza sativa L. japonica. Acta Crystallogr Sect F 70:1244–1248

    Article  CAS  Google Scholar 

  • Du B, Zhang WL, Liu BF, Hu J, Wei Z, Shi ZY, He RF, Zhu LL, Chen RZ, Han B, He G (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci U S A 106:22163–22168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elashry A, Okumoto S, Siddique S, Koch W, Kreil DP, Bohlmann H (2013) The AAP gene family for amino acid permeases contributes to development of the cyst nematode Heterodera schachtii in roots of Arabidopis. Plant Physiol Biochem 70:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis JG, Jones DA (2003) Plant disease resistance genes. In: Ezekowitz RAB, Hoffmann JA (eds) Innate immunity. Humana Press Inc, Totowa, pp 27–45

    Google Scholar 

  • Feng H, Wang X, Zhang Q, Fu Y, Feng C, Wang B, Huang L, Kang Z (2013) Monodehydroascorbatereductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Biochim Biophys Acta 1839:1–12

    Article  PubMed  Google Scholar 

  • Feng H, Liu W, Zhang Q, Wang X, Wang X, Duan X, Li F, Hunag L, Kang Z (2014) TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Plant Physiol Biochem 76:7–16

    Article  CAS  PubMed  Google Scholar 

  • Fujita D, Kohli A, Horgan FG (2013) Rice resistance to planthoppers and leafhoppers. Crit Rev Plant Sci 32:162–191

    Article  CAS  Google Scholar 

  • Golan I, Dominguez PG, Konrad Z, Shkolnik-Inbar D, Carrari F, Bar-Zvi D (2014) Tomato abscisic acid stress ripening (ASR) gene family revisited. PLoS One 9, e107117. doi:10.1371/journal.pone.0107117

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyl transferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148:1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Zhang K, Yang J, Zhang N, Fang A, Zhang Y, Liu Y, Chen Z, Hsiang T, Sun W (2015) Differential expression profiling of the early response to Ustilaginoidea virens between false smut resistant and susceptible rice varieties. BMC Genomics 16:955. doi:10.1186/s12864-015-2193-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators in response to biotic and abiotic stress. Plant Mol Biol 53:383–397

    Article  CAS  PubMed  Google Scholar 

  • Hind SR, Pulliam SE, Veronese P, Shantharaj D, Nazir A, Jacobs NS, Stratmann JW (2011) The COP9 signalosome controls jasmonic acid synthesis and plant responses to herbivory and pathogens. Plant J 65:480–491

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Wang J, Shi C, Yuan C, Peng C, Yin J, Li W, He M, Wang J, Ma B, Wang Y, Li S, Chen X (2015) A receptor like kinase gene with expressional responsiveness on Xanthomonas oryzae pv. oryzae is essential for Xa21-mediated disease resistance. Rice 8:1. doi:10.1186/s12284-014-0034-1

    Article  CAS  Google Scholar 

  • Hua LU (2009) Dissection of salicylic acid-mediated defense signaling networks. Plant Signal Behav 4:713–717

    Article  Google Scholar 

  • Huang D, Qiu Y, Zhang Y, Huang F, Meng J, Wei S, Li R, Chen B (2013) Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 125:219–229

    Article  Google Scholar 

  • Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopis RPM1 disease resistance protein. EMBO J 22:5679–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 23:791–798

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Gho HJ, Nguyen MX, Kim SR, An G (2013) Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Funct Integr Genomics 13:391–402

    Article  CAS  PubMed  Google Scholar 

  • Kadota Y, Shirasu K (2012) The HSP90 complex of plants. Biochim Biophys Acta, Mol Cell Res 1823:689–697

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Kobe B, Diesenhofer J (1995) A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374:183–186

    Article  CAS  PubMed  Google Scholar 

  • Kovi MR, Zhang Y, Yu S, Yang G, Yan W, Xing Y (2011) Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to green revolution gene sd1. Theor Appl Genet 123:705–714

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5:93–109. doi:10.2225/vol5-issue1-fulltext-3

    Article  Google Scholar 

  • Leung EW, Guddat LW (2009) Conformational changes in a plant ketol-acid reductoisomerase upon (Mg2+) and NADPH binding as revealed by two crystal structures. J Mol Biol 389:167–182

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Liu M, Hu Q, He M, Qi X, Xu Q, Zhou F, Chen X (2015) Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.). Sci Rep 5:9645. doi:10.1038/srep09645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin R, Zhao W, Meng X, Wang M, Peng Y (2007) Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. Plant Sci 172:120–130

    Article  CAS  Google Scholar 

  • Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279:2101–2108

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, EL-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260

    Article  CAS  PubMed  Google Scholar 

  • Liu HC, Tian DQ, Liu JX, Ma GY, Zou QC, Zhu ZJ (2013) Cloning and functional analysis of a novel ascorbate peroxidase (APX) gene from Anthurium andraeanum. J Zhejiang Univ Sci B 14:1110–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Malcuit T, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High-throughput virus induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 21:5690–5699

    Article  Google Scholar 

  • Marone D, Russo MA, Laido G, De Leonardis AM, Mastrangelo AMM (2013) Plant nucleotide binding site leucine rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212. doi:10.1186/gb-2006-7-4-212

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller GAD, Mittler RON (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra RN, Ramesha A, Kaul T, Nair S, Sopory SK, Reddy MK (2005) A modified cDNA subtraction to identify full-length differentially expressed genes from any given system: an alternate to DNA chip technology. Anal Biochem 345:149–157

    Article  CAS  PubMed  Google Scholar 

  • Moon DH, Salvatierra GR, Caldas DG, de Carvalho MCG, Carneiro RT, Franceschini LM, Oda S, Labate CA (2007) Comparison of the expression profiles of susceptible and resistant Eucalyptus grandis exposed to Puccinia psidii Winter using SAGE. Funct Plant Biol 34:1010–1018

    Article  Google Scholar 

  • Natrajkumar P, Sujatha K, Laha GS, Srinivasarao K, Mishra B, Viraktamath BC, Hari Y, Reddy CS, Balachandran SM, Ram T, Sheshumadhav M, Shobharani N, Neeraja CN, Ashokreddy G, Shaik H, Sundaram RM (2012) Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. Oryzae. Phytopathology 102:222–228

    Article  Google Scholar 

  • Pageau K, Reisdorf-Cren M, Morot-Gaudry JF, Masclaux-Daubresse C (2006) The two senescence-related markers, GS1 and GDH, involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves. J Exp Bot 57:547–557

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    CAS  PubMed  Google Scholar 

  • Peng H, Yang T, Jurick WM II (2014) Calmodulin gene expression in response to mechanical wounding and Botrytis cinerea infection in tomato fruit. Plants 3:427–441

    Article  CAS  Google Scholar 

  • Qu S, Liu G, Zhou B, Bellizi M, Zeng L, Dai L, Han B, Wang G (2006) The broad-spectrum blast resistance gene Pi9 Encodes an NBS-LRR Protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramkumar G, Srinivasarao K, MadanMohan K, Sudershan I, Sivaranjani AKP, Gopalkrishna K, Viraktamath BC, Madhav MS (2011) Development and validation of functional marker targeting an InDel in the major rice blast disease resistance gene Pi54 (Pikh). Mol Breed 27:129–135

    Article  Google Scholar 

  • Raorane ML, Pabuayon IM, Miro B, Kalladan R, Reza-Hajirezai M, Oane RH, Kumar A, Sreenivasulu N, Henry A, Kohli A (2015) Variation in primary metabolites in parental and near-isogenic lines of the QTL qDTY 12.1: altered roots and flag leaves but similar spikelets of rice under drought. Mol Breed 35:1–25

    Article  Google Scholar 

  • Rawat N, Sinha DK, Rajendrakumar P, Srivastava P, Neeraja CN, Sundaram RM, Nair S, Bentur JS (2010) Role of pathogenesis related genes in rice-gall midge interactions. Curr Sci 99:1361–1368

    CAS  Google Scholar 

  • Rawat N, Neeraja CN, Sundaram RM, Nair S, Bentur JS (2012a) A novel mechanism of gall midge resistance in the rice variety Kavya as revealed by microarray analysis. Funct Integr Genomics 12:249–264

    Article  CAS  PubMed  Google Scholar 

  • Rawat N, Neeraja CN, Sundaram RM, Nair S, Bentur JS (2012b) Differential gene expression in gall midge susceptible rice genotypes revealed by suppressive subtraction hybridization (SSH) cDNA libraries and microarray analysis. Rice 5:8. doi:10.1186/1939-8433-5-8

    Article  Google Scholar 

  • Rawat N, Himabindu K, Neeraja CN, Nair S, Bentur JS (2013) Suppressive subtraction hybridization reveals that rice gall midge attack elicits plant-pathogen-like responses in rice. Plant Physiol Biochem 63:122–130

    Article  CAS  PubMed  Google Scholar 

  • Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12:1917–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro CW, Carvalho FEL, Rosa SB, Alves‐Ferreira M, Andrade CMB, Ribeiro‐Alves M, Silveira JA, Margis R, Margis‐Pinheiro M (2012) Modulation of genes related to specific metabolic pathways in response to cytosolic ascorbate peroxidase knockdown in rice plants. Plant Biol 14:944–955

    Article  CAS  PubMed  Google Scholar 

  • Ryals J, Uknes S, Ward E (1994) Systemic Acquired Resistance. Plant Physiol 104:1109–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sama VSAK, Himabindu K, Naik BS, Sundaram RM, Viraktamath BC, Bentur JS (2012) Mapping and MAS breeding of an allelic gene to the Gm8 for resistance to Asian rice gall midge. Euphytica 187:393–400

    Article  CAS  Google Scholar 

  • Sama VSAK, Rawat N, Sundaram RM, Himabindu K, Naik BS, Viraktamath BC, Bentur JS (2014) A putative candidate for the recessive gall midge resistance gene gm3 in rice identified and validated. Theor Appl Genet 127:113–124

    Article  CAS  PubMed  Google Scholar 

  • Sarkar NK, Kundnani P, Grover A (2013) Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones 18:427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart J (2015) Insect effectors and gene-for-gene interactions with host plants. Curr Opin Insect Sci 9:1–6

    Article  Google Scholar 

  • Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X (2015) Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet 128:2213–2225

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv oryzae in rice, encodes a LRR receptor like kinase protein. Plant J 37:517–527

    Article  CAS  PubMed  Google Scholar 

  • Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A, Wu J, Sentoku N, Yasui H (2014) Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Sci Rep 4:5872. doi:10.1038/srep05872

    PubMed  Google Scholar 

  • Tang W, Ru Y, Hong L, Zhu Q, Zuo R, Guo X, Wang J, Zhang H, Zheng X, Wang P, Zhang Z (2015) System‐wide characterization of bZIP transcription factor proteins involved in infection‐related morphogenesis of Magnaporthe oryzae. Environ Microb 17:1377–1396

    Article  CAS  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:153–164

    Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JMI, Chueng F, Town CD (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-releted proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Vijaya Lakshmi P, Amudhan S, Himabindu K, Cheralu C, Bentur JS (2006) A new biotype of the Asian rice gall midge Orseolia oryzae (Diptera: Cecidomyiidae) characterized from the Warangal population in Andhra Pradesh, India. Int J Trop Insect Sci 26:207–211

    Google Scholar 

  • Wang J, Zhang Z, Huang R (2013) Regulation of ascorbic acid synthesis in plants. Plant Signal Behav 8, e24536. doi:10.4161/psb.24536

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, Chen X, Que S, He H (2014) Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study. BMC Genomics 15:344. doi:10.1186/1471-2164-15-344

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu R, Li S, He S, Wabmann F, Yu C, Qin G, Schreiber L, Li JQ, Gu H (2011) CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a Class IV homeodomain transcription factor, in rice and Arabidopis. Plant Cell 23:3392–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhang Z, Zhang Q, Han X, Gu X, Lu T (2015) The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping. Front Genet 6:226. doi:10.3389/fgene.2015.00226

    PubMed  PubMed Central  Google Scholar 

  • Xia Y, Yu K, Gao QM, Wilson EV, Navarre D, Kachroo P, Kachroo A (2012) Acyl CoA binding proteins are required for cuticle formation and plant responses to microbes. Front Plant Sci 3:1–18

    Article  Google Scholar 

  • Xie Q, Sanz-Burgos AP, Guo H, Garcia JA, Gutierrez C (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a gemini virus protein. Plant Mol Biol 39:647–656

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Audenaert K, Hofte M, Vleesschauwer DD (2013) Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses. PLoS One 8, e67413. doi:10.1371/journal.pone.0067413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Xiong W, Ye T, Wu Y (2012) Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot 63:2579–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasala AK, Rawat N, Sama VSAK, Himabindu K, Sundaram RM, Bentur JS (2012) In silico analysis for gene content in rice genomic regions mapped for the gall midge resistance genes. Plant Omics J 5:405–413

    CAS  Google Scholar 

  • Yoshida K, Sakamoto S, Kawai T, Kobayashi Y, Sato K, Ichinose Y, Yaoi K, Akiyoshi-Endo M, Sato H, Takamizo T, Ohme-Takagi M (2013) Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. Front Plant Sci 4:383. doi:10.3389/fpls.2013.00383

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhai Y, Sun Z, Zhang J, Kang K, Chen J, Zhang W (2015) Activation of the TOR signalling pathway by glutamine regulates insect fecundity. Sci Rep 5:10694. doi:10.1038/srep10694

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Liu X, Liu X, Jeannotte R, Reese JC, Harris M, Stuart JJ, Chen M-S (2008) Hessian fly (Mayetiola destructor) attack causes a dramatic shift in carbon and nitrogen metabolism in wheat. Mol Plant-Microbe Interact 21:70–78

    Article  PubMed  Google Scholar 

  • Zou LP, Li HX, Ouyang B, Zhang JH, Ye ZB (2005) Molecular cloning, expression and mapping analysis of a novel cytosolic ascorbate peroxidase gene from tomato. DNA Seq 16:456–461

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Project Director, ICAR-IIRR, formerly, Directorate of Rice Research, Hyderabad and the Director, International Centre for Genetic Engineering and Biotechnology, New Delhi, for the facilities and encouragement. This work was partly supported by a research grant (F. no. BT/AB/FG-2 (PH-II)/2009) to JSB and (F. no. BT/AB/FG-2 (PH-II)(4B)/2009) to SN from the Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suresh Nair or J. S. Bentur.

Additional information

Dhanasekar Divya and Y. Tunginba Singh contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 153 kb)

S1

Functional classification of ESTs, from Aganni, Suraksha and TN1 SSH libraries, into the three principal Gene Ontology (GO) categories: a biological process, b molecular function, and c cellular component. Values represent the number of ESTs found under each sub-category under the three main GO categories. Color bars represent ESTs from green bar—Aganni, red bar—Suraksha, and blue bar—TN1 library, respectively. (GIF 4 kb)

(GIF 4 kb)

(GIF 3 kb)

High resolution image (TIF 2333 kb)

High resolution image (TIF 2339 kb)

High resolution image (TIF 2299 kb)

S2

Relative expression profiles of 8 ESTs induced (≤2-fold) when compared with the respective uninfested control a at 24 hai and b at 120 hai. Error bars represent Mean ± S.D. Light bars represent Aganni-GMB1 and dark bars 74R-GMB1 incompatible interaction, respectively. (GIF 3 kb)

(GIF 3 kb)

High resolution image (TIF 2287 kb)

High resolution image (TIF 2285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, D., Singh, Y.T., Nair, S. et al. Analysis of SSH library of rice variety Aganni reveals candidate gall midge resistance genes. Funct Integr Genomics 16, 153–169 (2016). https://doi.org/10.1007/s10142-016-0474-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0474-3

Keywords

Navigation