Skip to main content
Log in

Light-emitting diode therapy increases collagen deposition during the repair process of skeletal muscle

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study analyzed the effects of light-emitting diode (LED) therapy on the morphology of muscle tissue as well as collagen remodeling and matrix metalloproteinase 2 (MMP-2) activity in the skeletal muscle of rats following acute injury. Wistar rats were divided into four groups: (1) control, (2) sham, (3) untreated cryoinjury, and (4) cryoinjury treated with LED. Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior muscle. For treatment, the LED equipment (wavelength 850 nm, output power 30 mW, and total energy 3.2 J) was used daily. The study periods were 1, 3, and 7 days after cryoinjury. Morphological aspects were evaluated through hematoxylin-eosin staining. The amount of collagen fibers was evaluated using Picro Sirius Red staining under polarized light. The gelatinase activity of MMP-2 was evaluated using zymography. The results showed significant reductions in inflammatory infiltrate after 3 days and an increased number of immature muscle fibers after 7 days. Furthermore, treatment induced a reduction in the gelatinolytic activity of MMP-2 after 1, 3, and 7 days in comparison to the untreated injury groups and increased the collagen deposition after 3 and 7 days in the treated groups. LED therapy at 850 nm induced a significant reduction in inflammation, decreased MMP-2 activity, and increased the amount of immature muscle and collagen fibers during the muscle repair process following acute injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Järvinen TA, Järvinen M, Kalimo H (2014) Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J 24:337–345

    Google Scholar 

  2. Sambasivan R, Tajbakhsh S (2015) Adult skeletal muscle stem cells. Results Probl Cell Differ 56:191–213. doi:10.1007/978-3-662-44608-9_9

    Article  PubMed  Google Scholar 

  3. Rocheteau P, Vinet M, Chretien F (2015) Dormancy and quiescence of skeletal muscle stem cells. Results Probl Cell Differ 56:215–235. doi:10.1007/978-3-662-44608-9_10

    Article  PubMed  Google Scholar 

  4. Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:1173–1187. doi:10.1152/ajpregu.00735.2009

    Article  Google Scholar 

  5. Kharraz Y, Guerra J, Mann CJ, Serrano AL, Muñoz-Cánoves P (2013) Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators Inflamm 2013:491497. doi:10.1155/2013/491497

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4:a008342. doi:10.1101/cshperspect.a008342

    Article  PubMed  PubMed Central  Google Scholar 

  7. Motohashi N, Asakura A (2014) Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2:1. doi:10.3389/fcell.2014.00001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Muñoz-Cánoves P (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21. doi:10.1186/2044-5040-1-21

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bellayr IH, Mu X, Li Y (2009) Biochemical insights into the role of matrix metalloproteinases in regeneration: challenges and recent developments. Future Med Chem 1:1095–1111. doi:10.4155/fmc.09.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nishimura T, Nakamura K, Kishioka Y, Kato-Mori Y, Wakamatsu J, Hattori A (2008) Inhibition of matrix metalloproteinases suppresses the migration of skeletal muscle cells. J Muscle Res Cell Motil 29:37–44. doi:10.1007/s10974-008-9140-2

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Li Y (2009) Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adh Migr 3:337–341

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bellayr I, Holden K, Mu X, Pan H, Li Y (2013) Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior. Int J Clin Exp Pathol 6:124–141

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106

    Article  PubMed  Google Scholar 

  14. Alves AN, Fernandes KP, Deana AM, Bussadori SK, Mesquita-Ferrari RA (2014) Effects of low-level laser therapy on skeletal muscle repair: a systematic review. Am J Phys Med Rehabil 93:1073–1085. doi:10.1097/PHM.0000000000000158

    Article  PubMed  Google Scholar 

  15. Kajagar BM, Godhi AS, Pandit A, Khatri S (2012) Efficacy of low level laser therapy on wound healing in patients with chronic diabetic foot ulcers—a randomised control trial. Indian J Surg 74:359–363. doi:10.1007/s12262-011-0393-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jovicić M, Konstantinović L, Lazović M, Jovicić V (2012) Clinical and functional evaluation of patients with acute low back pain and radiculopathy treated with different energy doses of low level laser therapy. Vojnosanit Pregl 69:656–662

    Article  PubMed  Google Scholar 

  17. Djavid GE, Mehrdad R, Ghasemi M, Hasan-Zadeh H, Sotoodeh-Manesh A, Pouryaghoub G (2007) In chronic low back pain, low level laser therapy combined with exercise is more beneficial than exercise alone in the long term: a randomised trial. Aust J Physiother 53:155–160

    Article  PubMed  Google Scholar 

  18. Alghadir A, Omar MT, Al-Askar AB, Al-Muteri NK (2014) Effect of low-level laser therapy in patients with chronic knee osteoarthritis: a single-blinded randomized clinical study. Lasers Med Sci 29:749–755. doi:10.1007/s10103-013-1393-3

    Article  PubMed  Google Scholar 

  19. de Souza TO, Mesquita DA, Ferrari RA, Dos Santos Pinto D Jr, Correa L, Bussadori SK, Fernandes KP, Martins MD (2011) Phototherapy with low-level laser affects the remodeling of types I and III collagen in skeletal muscle repair. Lasers Med Sci 26:803–814. doi:10.1007/s10103-011-0951-9

    Article  PubMed  Google Scholar 

  20. Baptista J, Martins MD, Pavesi VC, Bussadori SK, Fernandes KP, Pinto Júnior Ddos S, Ferrari RA (2011) Influence of laser photobiomodulation on collagen IV during skeletal muscle tissue remodeling after injury in rats. Photomed Laser Surg 29:11–17. doi:10.1089/pho.2009.2737

    Article  CAS  PubMed  Google Scholar 

  21. Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP (2011) Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 26:335–340. doi:10.1007/s10103-010-0850-5

    Article  PubMed  Google Scholar 

  22. Fernandes KP, Alves AN, Nunes FD, Souza NH, Silva JA Jr, Bussadori SK, Ferrari RA (2013) Effect of photobiomodulation on expression of IL-1β in skeletal muscle following acute injury. Lasers Med Sci 28:1043–1046. doi:10.1007/s10103-012-1233-x

    Article  PubMed  Google Scholar 

  23. Alves AN, Fernandes KP, Melo CA, Yamaguchi RY, França CM, Teixeira DF, Bussadori SK, Nunes FD, Mesquita-Ferrari RA (2014) Modulating effect of low level-laser therapy on fibrosis in the repair process of the tibialis anterior muscle in rats. Lasers Med Sci 29:813–821. doi:10.1007/s10103-013-1428-9

    Article  CAS  PubMed  Google Scholar 

  24. Fixler D, Duadi H, Ankri R, Zalevsky Z (2011) Determination of coherence length in biological tissues. Lasers Surg Med 43:339–343. doi:10.1002/lsm.21047

    Article  PubMed  Google Scholar 

  25. Dall Agnol MA, Nicolau RA, de Lima CJ, Munin E (2009) Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 24:909–916. doi:10.1007/s10103-009-0648-5

    Article  PubMed  Google Scholar 

  26. Camargo MZ, Siqueira CP, Preti MC, Nakamura FY, de Lima FM, Dias IF, Toginho Filho Dde O, Ramos Sde P (2012) Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats. Lasers Med Sci 27:1051–1058. doi:10.1007/s10103-011-1039-2

    Article  PubMed  Google Scholar 

  27. da Costa Santos VB, de Paula RS, Milanez VF, Corrêa JC, de Andrade Alves RI, Dias IF, Nakamura FY (2014) LED therapy or cryotherapy between exercise intervals in Wistar rats: anti-inflammatory and ergogenic effects. Lasers Med Sci 29:599–605. doi:10.1007/s10103-013-1371-9

    Article  PubMed  Google Scholar 

  28. Takhtfooladi MA, Shahzamani M, Takhtfooladi HA, Moayer F, Allahverdi A (2015) Effects of light-emitting diode (LED) therapy on skeletal muscle ischemia reperfusion in rats. Lasers Med Sci 30:311–316. doi:10.1007/s10103-014-1670-9

    Article  PubMed  Google Scholar 

  29. Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41:572–577. doi:10.1002/lsm.20810

    Article  PubMed  Google Scholar 

  30. Leal Junior EC, de Godoi V, Mancalossi JL, Rossi RP, De Marchi T, Parente M, Grosselli D, Generosi RA, Basso M, Frigo L, Tomazoni SS, Bjordal JM, Lopes-Martins RA (2011) Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes—preliminary results. Lasers Med Sci 26:493–501. doi:10.1007/s10103-010-0866-x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Borges LS, Cerqueira MS, dos Santos Rocha JA, Conrado LA, Machado M, Pereira R, Pinto Neto O (2014) Light-emitting diode phototherapy improves muscle recovery after a damaging exercise. Lasers Med Sci 29:1139–1144. doi:10.1007/s10103-013-1486-z

    PubMed  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  33. Stawikowski MJ, Aukszi B, Stawikowska R, Cudic M, Fields GB (2014) Glycosylation modulates melanoma cell α2β1 and α3β1 integrin interactions with type IV collagen. J Biol Chem 289:21591–21604. doi:10.1074/jbc.M114.572073

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robertson WE, Rose KL, Hudson BG, Vanacore RM (2014) Supramolecular organization of the α121-α565 collagen IV network. J Biol Chem 289(37):25601–10. doi:10.1074/jbc.M114.571844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Sousa AP, Santos JN, Dos Reis JA Jr, Ramos TA, de Souza J, Cangussú MC, Pinheiro AL (2010) Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomed Laser Surg 28:547–552. doi:10.1089/pho.2009.2605

    Article  PubMed  Google Scholar 

  36. Kerppers II, de Lima CJ, Fernandes AB, Villaverde AB (2015) Effect of light-emitting diode (ʎ 627 nm and 945 nm ʎ) treatment on first intention healing: immunohistochemical analysis. Lasers Med Sci 30:397–401. doi:10.1007/s10103-014-1668-3

    Article  PubMed  Google Scholar 

  37. Oliveira Sampaio SC, de C Monteiro JS, Cangussú MC, Pires Santos GM, dos Santos MA, dos Santos JN, Pinheiro AL (2013) Effect of laser and LED phototherapies on the healing of cutaneous wound on healthy and iron-deficient Wistar rats and their impact on fibroblastic activity during wound healing. Lasers Med Sci 28:799–806. doi:10.1007/s10103-012-1161-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank UNINOVE and the Brazilian fostering agencies Coordination for the Improvement of Higher Education Personnel (CAPES- grant: 1182781), National Council for Scientific and Technological Development (CNPq- grants: 303662/2012 and 305739/2014-0), and São Paulo Research Foundation (FAPESP- grants: 2013/21540-3, and 2014/12381-1) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Agnelli Mesquita-Ferrari.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights and informed consent

The experiments were performed in accordance with the guidelines of the Brazilian National Council for Animal Experiments and received approval from the Ethics Committee for Animal Research of University Nove de Julho (UNINOVE) (process number AN0015/2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo, C.A.V., Alves, A.N., Terena, S.M.L. et al. Light-emitting diode therapy increases collagen deposition during the repair process of skeletal muscle. Lasers Med Sci 31, 531–538 (2016). https://doi.org/10.1007/s10103-016-1888-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1888-9

Keywords

Navigation