Skip to main content
Log in

LED therapy or cryotherapy between exercise intervals in Wistar rats: anti-inflammatory and ergogenic effects

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to test, between two bouts of exercise, the effects of light-emitting diode (LED) therapy and cryotherapy regarding muscle damage, inflammation, and performance. Male Wistar rats were allocated in four groups: control, passive recovery (PR), cryotherapy (Cryo), and LED therapy. The animals were submitted to 45 min of swimming exercise followed by 25 min of recovery and then a second bout of either 45 min of exercise (muscle damage analysis) or time to exhaustion (performance). During the rest intervals, the rats were kept in passive rest (PR), submitted to cold water immersion (10 min, 10 °C) or LED therapy (940 nm, 4 J/cm2) of the gastrocnemius muscle. Blood samples were collected to analyze creatine kinase activity (CK), C-reactive protein (CRP), and leukocyte counts. The soleus muscles were evaluated histologically. Time to exhaustion was recorded during the second bout of exercise. After a second bout of 45 min, the results demonstrated leukocytosis in the PR and Cryo groups. Neutrophil counts were increased in all test groups. CK levels were increased in the Cryo group. CRP was increased in PR animals. The PR group presented a high frequency of necrosis, but the LED group had fewer necrotic areas. Edema formation was prevented, and fewer areas of inflammatory cells were observed in the LED group. The time to exhaustion was greater in both the LED and Cryo groups, without differences in CK levels. CRP was decreased in LED animals. We conclude that LED therapy and cryotherapy can improve performance, although LED therapy is more efficient in preventing muscle damage and local and systemic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mohr M, Krustrup P, Bangsbo J (2003) Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci 21(7):519–528. doi:10.1080/0264041031000071182

    Article  PubMed  Google Scholar 

  2. Chelly MS, Hermassi S, Aouadi R, Khalifa R, Van den Tillaar R, Chamari K, Shephard RJ (2011) Match analysis of elite adolescent team handball players. J Strength Cond Res 25(9):2410–2417. doi:10.1519/JSC.0b013e3182030e43

    Article  PubMed  Google Scholar 

  3. Bangsbo J, Iaia FM, Krustrup P (2007) Metabolic response and fatigue in soccer. Int J Sports Physiol Perform 2(2):111–127

    PubMed  Google Scholar 

  4. Reilly T, Drust B, Clarke N (2008) Muscle fatigue during football match-play. Sports Med 38(5):357–367

    Article  PubMed  Google Scholar 

  5. Mendez-Villanueva A, Buchheit M, Simpson B, Bourdon PC (2013) Match play intensity distribution in youth soccer. Int J Sports Med 34(2):101–110. doi:10.1055/s-0032-1306323

    CAS  PubMed  Google Scholar 

  6. Rowsell GJ, Coutts AJ, Reaburn P, Hill-Haas S (2009) Effects of cold-water immersion on physical performance between successive matches in high-performance junior male soccer players. J Sports Sci 27(6):565–573. doi:10.1080/02640410802603855

    Article  PubMed  Google Scholar 

  7. Ascensao A, Leite M, Rebelo AN, Magalhaes S, Magalhaes J (2011) Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci 29(3):217–225. doi:10.1080/02640414.2010.526132

    Article  PubMed  Google Scholar 

  8. Elias GP, Varley MC, Wyckelsma VL, McKenna MJ, Minahan CL, Aughey RJ (2012) Effects of water immersion on posttraining recovery in Australian footballers. Int J Sports Physiol Perform 7(4):357–366

    PubMed  Google Scholar 

  9. Kinugasa T, Kilding AE (2009) A comparison of post-match recovery strategies in youth soccer players. J Strength Cond Res 23(5):1402–1407. doi:10.1519/JSC.0b013e3181a0226a

    Article  PubMed  Google Scholar 

  10. Leeder J, Gissane C, van Someren K, Gregson W, Howatson G (2012) Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med 46(4):233–240. doi:10.1136/bjsports-2011-090061

    Article  PubMed  Google Scholar 

  11. Camargo MZ, Siqueira CP, Preti MC, Nakamura FY, de Lima FM, Dias IF, Toginho Filho Dde O, Ramos Sde P (2012) Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats. Lasers Med Sci 27(5):1051–1058. doi:10.1007/s10103-011-1039-2

    Article  PubMed  Google Scholar 

  12. Vieira WH, Ferraresi C, Perez SE, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27(2):497–504. doi:10.1007/s10103-011-0984-0

    Article  PubMed  Google Scholar 

  13. de Almeida P, Lopes-Martins RA, Tomazoni SS, Silva JA Jr, de Carvalho PT, Bjordal JM, Leal Junior EC (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87(5):1159–1163. doi:10.1111/j.1751-1097.2011.00968.x

    Article  PubMed  Google Scholar 

  14. Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B 95(2):89–92. doi:10.1016/j.jphotobiol.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  15. De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27(1):231–236. doi:10.1007/s10103-011-0955-5

    Article  PubMed  Google Scholar 

  16. Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls Corsetti F, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532. doi:10.2519/jospt.2010.3294

    Article  PubMed  Google Scholar 

  17. Carmo-Araújo EM, Dal-Pai-Silva M, Dal-Pai V, Cecchini R, Ferreira ALA (2007) Ischaemia and reperfusion effects on skeletal muscle tissue: morphological and histochemical studies. Int J Exp Path 88:147–154. doi:10.1111/j.1365-2613.2007.00526.x

    Article  Google Scholar 

  18. Dawson CA, Horvath SM (1970) Swimming in small laboratory animals. Med Sci Sports 2(2):51–78

    CAS  PubMed  Google Scholar 

  19. Bailey DM, Erith SJ, Griffin PJ, Dowson A, Brewer DS, Gant N, Williams C (2007) Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci 25(11):1163–1170. doi:10.1080/02640410600982659

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Manso JM, Rodriguez-Matoso D, Rodriguez-Ruiz D, Sarmiento S, de Saa Y, Calderon J (2011) Effect of cold-water immersion on skeletal muscle contractile properties in soccer players. Am J Phys Med Rehabil 90(5):356–363. doi:10.1097/PHM.0b013e31820ff352

    Article  PubMed  Google Scholar 

  21. Pournot H, Bieuzen F, Duffield R, Lepretre PM, Cozzolino C, Hausswirth C (2011) Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol 111(7):1287–1295. doi:10.1007/s00421-010-1754-6

    Article  CAS  PubMed  Google Scholar 

  22. Rupp KA, Selkow NM, Parente WR, Ingersoll CD, Weltman AL, Saliba SA (2012) The effect of cold water immersion on 48-hour performance testing in collegiate soccer players. J Strength Cond Res 26(8):2043–2050. doi:10.1519/JSC.0b013e318239c3a1

    Article  PubMed  Google Scholar 

  23. Stanley J, Buchheit M, Peake JM (2012) The effect of post-exercise hydrotherapy on subsequent exercise performance and heart rate variability. Eur J Appl Physiol 112(3):951–961. doi:10.1007/s00421-011-2052-7

    Article  PubMed  Google Scholar 

  24. Bleakley C, McDonough S, Gardner E, Baxter GD, Hopkins JT, Davison GW (2012) Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Cochrane Database Syst Rev 2:CD008262. doi:10.1002/14651858.CD008262.pub2

  25. Buchheit M, Peiffer JJ, Abbiss CR, Laursen PB (2009) Effect of cold water immersion on postexercise parasympathetic reactivation. Am J Physiol Heart Circ Physiol 296(2):H421–H427. doi:10.1152/ajpheart.01017.2008

    Article  CAS  PubMed  Google Scholar 

  26. Algafly AA, George KP (2007) The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br J Sports Med 41 (6):365–369; discussion 369. doi: 10.1136/bjsm.2006.031237

    Google Scholar 

  27. Crowley GC, Garg A, Lohn MS, Van Someren N, Wade AJ (1991) Effects of cooling the legs on performance in a standard Wingate anaerobic power test. Br J Sports Med 25(4):200–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Peiffer JJ, Abbiss CR, Nosaka K, Peake JM, Laursen PB (2009) Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J Sci Med Sport 12(1):91–96. doi:10.1016/j.jsams.2007.10.011

    Article  PubMed  Google Scholar 

  29. Leal Junior EC, de Godoi V, Mancalossi JL, Rossi RP, De Marchi T, Parente M, Grosselli D, Generosi RA, Basso M, Frigo L, Tomazoni SS, Bjordal JM, Lopes-Martins RA (2011) Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes—preliminary results. Lasers Med Sci 26(4):493–501. doi:10.1007/s10103-010-0866-x

    Article  PubMed Central  PubMed  Google Scholar 

  30. Prindeze NJ, Moffatt LT, Shupp JW (2012) Mechanisms of action for light therapy: a review of molecular interactions. Exp Biol Med (Maywood) 237(11):1241–1248. doi:10.1258/ebm.2012.012180

    Article  CAS  Google Scholar 

  31. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280(6):4761–4771. doi:10.1074/jbc.M409650200

    Article  CAS  PubMed  Google Scholar 

  32. Komine N, Ikeda K, Tada K, Hashimoto N, Sugimoto N, Tomita K (2010) Activation of the extracellular signal-regulated kinase signal pathway by light emitting diode irradiation. Lasers Med Sci 25(4):531–537. doi:10.1007/s10103-009-0743-7

    Article  PubMed  Google Scholar 

  33. Paolillo FR, Milan JC, Aniceto IV, Barreto SG, Rebelatto JR, Borghi-Silva A, Parizotto NA, Kurachi C, Bagnato VS (2011) Effects of infrared-LED illumination applied during high-intensity treadmill training in postmenopausal women. Photomed Laser Surg 29(9):639–645. doi:10.1089/pho.2010.2961

    Article  PubMed  Google Scholar 

  34. Bagnato VS (2012) Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci 27(2):453–458. doi:10.1007/s10103-011-0957-3

    Article  Google Scholar 

  35. Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41(8):572–577. doi:10.1002/lsm.20810

    Article  PubMed  Google Scholar 

  36. Leal Junior ECP, Lopes-Martins RÁB, Baroni BM, De Marchi T, Rossi RP, Grosselli D, Generosi RA, de Godoi V, Basso M, Mancalossi JL, Bjordal JM (2009) Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg 27(4):617–623. doi:10.1089/pho.2008.2350

    Article  PubMed  Google Scholar 

  37. Bangsbo J, Iaia FM, Krustrup P (2008) The yo-yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med 38(1):37–51

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Total Vet–Londrina and Virbac do Brasil for the donation of anesthetic drugs. This study was supported, in part, by a grant from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior to Vanessa Batista da Costa Santos and Vinícius Flávio Milanez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange de Paula Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa Santos, V.B., de Paula Ramos, S., Milanez, V.F. et al. LED therapy or cryotherapy between exercise intervals in Wistar rats: anti-inflammatory and ergogenic effects. Lasers Med Sci 29, 599–605 (2014). https://doi.org/10.1007/s10103-013-1371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1371-9

Keywords

Navigation