Skip to main content
Log in

Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this work is to analyze the effects of LED therapy at 940 nm or cold water immersion therapy (CWI) after an acute bout of exercise on markers of muscle damage and inflammation. Thirty-two male Wistar rats were allocated into four groups: animals kept at rest (control), exercised animals (E), exercised + CWI (CWI), and exercised + LED therapy (LED). The animals swam for 100 min, after which blood samples were collected for lactate analysis. Animals in the E group were returned to their cages without treatment, the CWI group was placed in cold water (10°C) for 10 min and the LED group received LED irradiation on both gastrocnemius muscles (4 J/cm2 each). After 24 h, the animals were killed and the soleus muscles were submitted to histological analysis. Blood samples were used for hematological and CK analyses. The results demonstrated that the LED group presented fewer areas of muscle damage and inflammatory cell infiltration and lower levels of CK activity than the E group. Fewer areas of damaged muscle fiber were observed in the LED group than in CWI. CWI and LED did not reduce edema areas. Hematological analysis showed no significant effect of either treatment on leukocyte counts. The results suggest that LED therapy is more efficient than CWI in preventing muscle damage and local inflammation after exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aoi W, Naito Y, Takanami Y, Kawai Y, Sakuma K, Ichikawa H, Yoshida N, Yoshikawa T (2004) Oxidative stress and delayed-onset muscle damage after exercise. Free Radic Biol Med 37(4):480–487. doi:10.1016/j.freeradbiomed.2004.05.008

    Article  PubMed  CAS  Google Scholar 

  2. Ascensao A, Rebelo A, Oliveira E, Marques F, Pereira L, Magalhaes J (2008) Biochemical impact of a soccer match—analysis of oxidative stress and muscle damage markers throughout recovery. Clin Biochem 41(10–11):841–851. doi:10.1016/j.clinbiochem.2008.04.008

    Article  PubMed  CAS  Google Scholar 

  3. Iguchi M, Shields RK (2010) Quadriceps low-frequency fatigue and muscle pain are contraction-type-dependent. Muscle Nerve 42(2):230–238. doi:10.1002/mus.21679

    Article  PubMed  Google Scholar 

  4. Chatzinikolaou A, Fatouros IG, Gourgoulis V, Avloniti A, Jamurtas AZ, Nikolaidis MG, Douroudos I, Michailidis Y, Beneka A, Malliou P, Tofas T, Georgiadis I, Mandalidis D, Taxildaris K (2010) Time course of changes in performance and inflammatory responses after acute plyometric exercise. J Strength Cond Res 24(5):1389–1398. doi:10.1519/JSC.0b013e3181d1d318

    Article  PubMed  Google Scholar 

  5. Paulsen G, Egner IM, Drange M, Langberg H, Benestad HB, Fjeld JG, Hallen J, Raastad T (2010) A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise. Scand J Med Sci Sports 20(1):e195–e207. doi:10.1111/j.1600-0838.2009.00947.x

    Article  PubMed  CAS  Google Scholar 

  6. Crameri RM, Aagaard P, Qvortrup K, Langberg H, Olesen J, Kjaer M (2007) Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol 583(Pt 1):365–380. doi:10.1113/jphysiol.2007.128827

    Article  PubMed  CAS  Google Scholar 

  7. Lauritzen F, Paulsen G, Raastad T, Bergersen LH, Owe SG (2009) Gross ultrastructural changes and necrotic fiber segments in elbow flexor muscles after maximal voluntary eccentric action in humans. J Appl Physiol 107(6):1923–1934. doi:10.1152/japplphysiol.00148.2009

    Article  PubMed  Google Scholar 

  8. Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol 103(2):693–699. doi:10.1152/japplphysiol.00008.2007

    Article  PubMed  CAS  Google Scholar 

  9. Gokhale R, Chandrashekara S, Vasanthakumar KC (2007) Cytokine response to strenuous exercise in athletes and non-athletes–an adaptive response. Cytokine 40(2):123–127. doi:10.1016/j.cyto.2007.08.006

    Article  PubMed  CAS  Google Scholar 

  10. Neubauer O, Reichhold S, Nersesyan A, Konig D, Wagner KH (2008) Exercise-induced DNA damage: is there a relationship with inflammatory responses? Exerc Immunol Rev 14:51–72

    PubMed  Google Scholar 

  11. Nielsen AR, Pedersen BK (2007) The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab 32(5):833–839. doi:10.1139/H07-054

    Article  PubMed  CAS  Google Scholar 

  12. Murase S, Terazawa E, Queme F, Ota H, Matsuda T, Hirate K, Kozaki Y, Katanosaka K, Taguchi T, Urai H, Mizumura K (2010) Bradykinin and nerve growth factor play pivotal roles in muscular mechanical hyperalgesia after exercise (delayed-onset muscle soreness). J Neurosci 30(10):3752–3761. doi:10.1523/JNEUROSCI.3803-09.2010

    Article  PubMed  CAS  Google Scholar 

  13. Uchiyama S, Tsukamoto H, Yoshimura S, Tamaki T (2006) Relationship between oxidative stress in muscle tissue and weight-lifting-induced muscle damage. Pflugers Arch 452(1):109–116. doi:10.1007/s00424-005-0012-y

    Article  PubMed  CAS  Google Scholar 

  14. Brancaccio P, Maffulli N, Limongelli FM (2007) Creatine kinase monitoring in sport medicine. Br Med Bull 81–82:209–230. doi:10.1093/bmb/ldm014

    Article  PubMed  Google Scholar 

  15. Fredsted A, Gissel H, Madsen K, Clausen T (2007) Causes of excitation-induced muscle cell damage in isometric contractions: mechanical stress or calcium overload? Am J Physiol Regul Integr Comp Physiol 292(6):R2249–R2258. doi:10.1152/ajpregu.00415.2006

    Article  PubMed  CAS  Google Scholar 

  16. Overgaard K, Lindstrom T, Ingemann-Hansen T, Clausen T (2002) Membrane leakage and increased content of Na + −K + pumps and Ca2+ in human muscle after a 100-km run. J Appl Physiol 92(5):1891–1898. doi:10.1152/japplphysiol.00669.2001

    PubMed  CAS  Google Scholar 

  17. Mikkelsen UR, Fredsted A, Gissel H, Clausen T (2004) Excitation-induced Ca2+ influx and muscle damage in the rat: loss of membrane integrity and impaired force recovery. J Physiol 559(Pt 1):271–285. doi:10.1113/jphysiol.2004.067199

    Article  PubMed  CAS  Google Scholar 

  18. Gissel H (2005) The role of Ca2+ in muscle cell damage. Ann N Y Acad Sci 1066:166–180. doi:10.1196/annals.1363.013

    Article  PubMed  CAS  Google Scholar 

  19. Taguchi T, Sato J, Mizumura K (2005) Augmented mechanical response of muscle thin-fiber sensory receptors recorded from rat muscle-nerve preparations in vitro after eccentric contraction. J Neurophysiol 94(4):2822–2831. doi:10.1152/jn.00470.2005

    Article  PubMed  Google Scholar 

  20. Gibson W, Arendt-Nielsen L, Taguchi T, Mizumura K, Graven-Nielsen T (2009) Increased pain from muscle fascia following eccentric exercise: animal and human findings. Exp Brain Res 194(2):299–308. doi:10.1007/s00221-008-1699-8

    Article  PubMed  Google Scholar 

  21. Cheung K, Hume P, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33(2):145–164

    Article  PubMed  Google Scholar 

  22. Zainuddin Z, Newton M, Sacco P, Nosaka K (2005) Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. J Athl Train 40(3):174–180

    PubMed  Google Scholar 

  23. Best TM, Hunter R, Wilcox A, Haq F (2008) Effectiveness of sports massage for recovery of skeletal muscle from strenuous exercise. Clin J Sport Med 18(5):446–460. doi:10.1097/JSM.0b013e31818837a1

    Article  PubMed  Google Scholar 

  24. Stay JC, Richard MD, Draper DO, Schulthies SS, Durrant E (1998) Pulsed ultrasound fails to diminish delayed-onset muscle soreness symptoms. J Athl Train 33(4):341–346

    PubMed  CAS  Google Scholar 

  25. Arent SM, Senso M, Golem DL, McKeever KH (2010) The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study. J Int Soc Sports Nutr 7(1):11. doi:10.1186/1550-2783-7-11

    Article  PubMed  Google Scholar 

  26. Amon M, Menger MD, Vollmar B (2003) Heme oxygenase and nitric oxide synthase mediate cooling-associated protection against TNF-alpha-induced microcirculatory dysfunction and apoptotic cell death. FASEB J 17(2):175–185. doi:10.1096/fj.02-0368com

    Article  PubMed  CAS  Google Scholar 

  27. Nadler SF, Weingand K, Kruse RJ (2004) The physiologic basis and clinical applications of cryotherapy and thermotherapy for the pain practitioner. Pain Physician 7(3):395–399

    PubMed  Google Scholar 

  28. Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4(5–6):559–567. doi:10.1016/j.mito.2004.07.033

    Article  PubMed  CAS  Google Scholar 

  29. Douris P, Southard V, Ferrigi R, Grauer J, Katz D, Nascimento C, Podbielski P (2006) Effect of phototherapy on delayed onset muscle soreness. Photomed Laser Surg 24(3):377–382. doi:10.1089/pho.2006.24.377

    Article  PubMed  Google Scholar 

  30. Komine N, Ikeda K, Tada K, Hashimoto N, Sugimoto N, Tomita K (2010) Activation of the extracellular signal-regulated kinase signal pathway by light emitting diode irradiation. Lasers Med Sci 25(4):531–537. doi:10.1007/s10103-009-0743-7

    Article  PubMed  Google Scholar 

  31. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280(6):4761–4771. doi:10.1074/jbc.M409650200

    Article  PubMed  CAS  Google Scholar 

  32. Liang HL, Whelan HT, Eells JT, Wong-Riley MT (2008) Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 153(4):963–974. doi:10.1016/j.neuroscience.2008.03.042

    Article  PubMed  CAS  Google Scholar 

  33. Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ, Hammamieh R, Das R, Jett M (2003) Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 21(2):67–74. doi:10.1089/104454703765035484

    Article  PubMed  Google Scholar 

  34. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18(2):95–99. doi:10.1007/s10103-003-0262-x

    Article  PubMed  Google Scholar 

  35. Xavier M, David DR, de Souza RA, Arrieiro AN, Miranda H, Santana ET, Silva JA Jr, Salgado MA, Aimbire F, Albertini R (2010) Anti-inflammatory effects of low-level light emitting diode therapy on Achilles tendinitis in rats. Lasers Surg Med 42(6):553–558. doi:10.1002/lsm.20896

    Article  PubMed  Google Scholar 

  36. Lim W, Lee S, Kim I, Chung M, Kim M, Lim H, Park J, Kim O, Choi H (2007) The anti-inflammatory mechanism of 635-nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39(7):614–621. doi:10.1002/lsm.20533

    Article  PubMed  Google Scholar 

  37. Casalechi HL, Nicolau RA, Casalechi VL, Silveira L Jr, De Paula AM, Pacheco MT (2009) The effects of low-level light emitting diode on the repair process of Achilles tendon therapy in rats. Lasers Med Sci 24(4):659–665. doi:10.1007/s10103-008-0607-6

    Article  PubMed  Google Scholar 

  38. Karu TI, Pyatibrat LV, Kalendo GS (2001) Cell attachment modulation by radiation from a pulsed light diode (lambda = 820 nm) and various chemicals. Lasers Surg Med 28(3):227–236. doi:10.1002/lsm.1043

    Article  PubMed  CAS  Google Scholar 

  39. Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41(8):572–577. doi:10.1002/lsm.20810

    Article  PubMed  Google Scholar 

  40. Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA (2010) Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg 28(5):653–658. doi:10.1089/pho.2009.2688

    Article  PubMed  Google Scholar 

  41. Sussai DA, Carvalho Pde T, Dourado DM, Belchior AC, dos Reis FA, Pereira DM (2010) Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats. Lasers Med Sci 25(1):115–120. doi:10.1007/s10103-009-0697-9

    Article  PubMed  Google Scholar 

  42. Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108(6):1083–1088. doi:10.1007/s00421-009-1321-1

    Article  PubMed  Google Scholar 

  43. da Costa Santos VB, Ruiz RJ, Vettorato ED, Nakamura FY, Juliani LC, Polito MD, Siqueira CP, de Paula RS (2011) Effects of chronic caffeine intake and low-intensity exercise on skeletal muscle of Wistar rats. Exp Physiol 96(11):1228–1238. doi:10.1113/expphysiol.2011.060483

    Article  PubMed  Google Scholar 

  44. Carmo-Araujo EM, Dal-Pai-Silva M, Dal-Pai V, Cecchini R, Anjos Ferreira AL (2007) Ischaemia and reperfusion effects on skeletal muscle tissue: morphological and histochemical studies. Int J Exp Pathol 88(3):147–154. doi:10.1111/j.1365-2613.2007.00526.x

    Article  PubMed  Google Scholar 

  45. Buchheit M, Peiffer JJ, Abbiss CR, Laursen PB (2009) Effect of cold water immersion on postexercise parasympathetic reactivation. Am J Physiol Heart Circ Physiol 296(2):H421–H427. doi:10.1152/ajpheart.01017.2008

    Article  PubMed  CAS  Google Scholar 

  46. Pournot H, Bieuzen F, Duffield R, Lepretre PM, Cozzolino C, Hausswirth C (2011) Short-term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol 111(7):1287–1295. doi:10.1007/s00421-010-1754-6

    Article  PubMed  CAS  Google Scholar 

  47. Sellwood KL, Brukner P, Williams D, Nicol A, Hinman R (2007) Ice-water immersion and delayed-onset muscle soreness: a randomised controlled trial. Br J Sports Med 41(6):392–397. doi:10.1136/bjsm.2006.033985

    Article  PubMed  Google Scholar 

  48. Howatson G, Goodall S, van Someren KA (2009) The influence of cold water immersions on adaptation following a single bout of damaging exercise. Eur J Appl Physiol 105(4):615–621. doi:10.1007/s00421-008-0941-1

    Article  PubMed  Google Scholar 

  49. Rowsell GJ, Coutts AJ, Reaburn P, Hill-Haas S (2009) Effects of cold-water immersion on physical performance between successive matches in high-performance junior male soccer players. J Sports Sci 27(6):565–573. doi:10.1080/02640410802603855

    Article  PubMed  Google Scholar 

  50. Leal Junior EC, de Godoi V, Mancalossi JL, Rossi RP, De Marchi T, Parente M, Grosselli D, Generosi RA, Basso M, Frigo L, Tomazoni SS, Bjordal JM, Lopes-Martins RA (2011) Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes–preliminary results. Lasers Med Sci 26(4):493–501. doi:10.1007/s10103-010-0866-x

    Article  PubMed  Google Scholar 

  51. Ascensao A, Leite M, Rebelo AN, Magalhaes S, Magalhaes J (2011) Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci 29(3):217–225. doi:10.1080/02640414.2010.526132

    Article  PubMed  Google Scholar 

  52. Kakanis MW, Peake J, Brenu EW, Simmonds M, Gray B, Hooper SL, Marshall-Gradisnik SM (2010) The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc Immunol Rev 16:119–137

    PubMed  CAS  Google Scholar 

  53. Walsh NP, Gleeson M, Pyne DB, Nieman DC, Dhabhar FS, Shephard RJ, Oliver SJ, Bermon S, Kajeniene A (2011) Position statement. Part two: Maintaining immune health. Exerc Immunol Rev 17:64–103

    PubMed  Google Scholar 

  54. Morozov VI, Tsyplenkov PV, Golberg ND, Kalinski MI (2006) The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats. Eur J Appl Physiol 97(6):716–722. doi:10.1007/s00421-006-0193-x

    Article  PubMed  CAS  Google Scholar 

  55. Jimbo K, Noda K, Suzuki K, Yoda K (1998) Suppressive effects of low-power laser irradiation on bradykinin evoked action potentials in cultured murine dorsal root ganglion cells. Neurosci Lett 240(2):93–96

    Article  PubMed  CAS  Google Scholar 

  56. Simunovic Z, Trobonjaca T, Trobonjaca Z (1998) Treatment of medial and lateral epicondylitis–tennis and golfer's elbow–with low level laser therapy: a multicenter double blind, placebo-controlled clinical study on 324 patients. J Clin Laser Med Surg 16(3):145–151

    PubMed  CAS  Google Scholar 

  57. Xu X, Zhao X, Liu TC, Pan H (2008) Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. Photomed Laser Surg 26(3):197–202. doi:10.1089/pho.2007.2125

    Article  PubMed  CAS  Google Scholar 

  58. Serafim KG, Ramos SD, de Lima FM, Carandina M, Ferrari O, Dias IF, Toginho Filho DD, Siqueira CP (2011) Effects of 940 nm light-emitting diode (led) on sciatic nerve regeneration in rats. Lasers Med Sci. doi:10.1007/s10103-011-0923-0

Download references

Acknowledgements

The authors would like to thank Total Vet Londrina-PR, Vibac do Brasil and Biotecnica (Varginha, Brasil) for donating anesthetics and laboratory reagents. The authors also thank William Hanes (Translingual Comunicações-Brasil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange de Paula Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camargo, M.Z., Siqueira, C.P.C.M., Preti, M.C.P. et al. Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats. Lasers Med Sci 27, 1051–1058 (2012). https://doi.org/10.1007/s10103-011-1039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-1039-2

Keywords

Navigation