Skip to main content

Advertisement

Log in

Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The already known benefits produced by the interaction of coherent light (laser) with biologic tissues determine its use as an adjuvant in the treatment of several complications associated with diabetes. Non-coherent light, such as that emitted by light emitting diodes (LEDs), becomes a promising alternative, because of its low cost and easy handling in these applications. Thirty-six rats were given surgical dorsum lesions. The lesions for the control group did not receive any supporting therapy. The other groups were irradiated only once, 30 min after the establishment of the lesion, with LED (640 nm with 40 nm full bandwidth at half maximum) or laser (660 nm). The histomorphological and histomorphometrical parameters were quantified. The coherent and non-coherent lights produced similar effects during a period of 168 h after the lesions had been made. For the group composed of diabetic animals, 72 h after creation of the lesion, it was observed that the therapy with LEDs had been more efficient than that with the laser in the reduction of the wounds’ diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cotran RS, Kumar V, Collins T (2004) Robbins pathologic basis of disease. Saunders

  2. Renvert S (2003) Destructive periodontal disease in relation to diabetes mellitus, cardiovascular diseases, osteoporosis and respiratory diseases. Oral Health Prev Dent 1 (Suppl 1):341–357

    PubMed  Google Scholar 

  3. Jakus V, Rietbrock N (2004) Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 53:131–142

    CAS  PubMed  Google Scholar 

  4. Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol Chem 27:219–223. doi:10.1016/1011–1344(94)07078–3

    Article  CAS  Google Scholar 

  5. Greco M, Guida G, Perlino E, Marra E, Quagliariello E (1989) Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser. Biochem Biophys Res Commun 163:1428–1434. doi:10.1016/0006–291X(89)91138–8

    Article  CAS  PubMed  Google Scholar 

  6. Passarella S, Ostuni A, Atlante A, Quagliariello E (1988) Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium-neon laser. Biochem Biophys Res Commun 156:978–986. doi:10.1016/S0006–291X(88)80940–9

    Article  CAS  PubMed  Google Scholar 

  7. Ihsan FRM (2005) Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg 23:289–294. doi:10.1089/pho.2005.23.289

    Article  CAS  PubMed  Google Scholar 

  8. Schindl A, Heinze G, Schindl M, Pernerstorfer-Schon H, Schindl L (2002) Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc Res 64:240–246. doi:10.1006/mvre.2002.2429

    Article  PubMed  Google Scholar 

  9. Schindl A, Schindl M, Schon H, Knobler R, Havelec L, Schindl L (1998) Low-intensity laser irradiation improves skin circulation in patients with diabetic microangiopathy. Diabetes Care 21:580–584. doi:10.2337/diacare.21.4.580

    Article  CAS  PubMed  Google Scholar 

  10. Seppala B, Sorsa T, Ainamo J (1997) Morphometric analysis of cellular and vascular changes in gingival connective tissue in long-term insulin-dependent diabetes. J Periodontol 68:1237–1245

    CAS  PubMed  Google Scholar 

  11. Rabelo SB, Villaverde AB, Nicolau R, Salgado MC, Melo Mda S, Pacheco MT (2006) Comparison between wound healing in induced diabetic and nondiabetic rats after low-level laser therapy. Photomed Laser Surg 24:474–479. doi:10.1089/pho.2006.24.474

    Article  PubMed  Google Scholar 

  12. Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22:241–247. doi:10.1089/1549541041438623

    Article  PubMed  Google Scholar 

  13. Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MTT, Eells JT, Gould LJ, Hammamieh R, Das R, Jett M (2003) Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 21:67–74. doi:10.1089/104454703765035484

    Article  PubMed  Google Scholar 

  14. Whelan HT, Smits RL, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19:305–314. doi:10.1089/104454701753342758

    Article  CAS  PubMed  Google Scholar 

  15. Al-Watban FA, Andres BL (2006) Polychromatic LED in oval full-thickness wound healing in non-diabetic and diabetic rats. Photomed Laser Surg 24:10–16. doi:10.1089/pho.2006.24.10

    Article  PubMed  Google Scholar 

  16. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106. doi:10.1089/pho.2006.2011

    Article  PubMed  Google Scholar 

  17. Waynforth HB, Flecknell PA (2004) Experimental and surgical technique in the rat. Academy Press

  18. Yu W, Naim JO, Lanzafame RJ (1997) Effects of photostimulation on wound healing in diabetic mice. Lasers Surg Med 20:56–63. doi:10.1002/(SICI)1096–9101(1997)20:1<56::AID-LSM9>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  19. Maiya GA, Kumar P, Rao L (2005) Effect of low intensity helium-neon (He-Ne) laser irradiation on diabetic wound healing dynamics. Photomed Laser Surg 23:187–190. doi:10.1089/pho.2005.23.187

    Article  PubMed  Google Scholar 

  20. Allendorf JDF, Bessler M, Huang J, Kayton ML, Laird D, Nowygrod R, Treat MR (1997) Helium-neon laser irradiation at fluences of 1, 2, and 4 J/cm(2) failed to accelerate wound healing as assessed by both wound contracture rate and tensile strength. Lasers Surg Med 20:340–345. doi:10.1002/(SICI)1096–9101(1997)20:3<340::AID-LSM13>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  21. Petersen SL, Botes C, Olivier A, Guthrie AJ (1999) The effect of low level laser therapy (LLLT) on wound healing in horses. Equine Vet J 31:228–231

    Article  CAS  PubMed  Google Scholar 

  22. Schlager A, Kronberger P, Petschke F, Ulmer H (2000) Low-power laser light in the healing of burns: a comparison between two different wavelengths (635 nm and 690 nm) and a placebo group. Lasers Surg Med 27:39–42. doi:10.1002/1096–9101(2000)27:1<39::AID-LSM5>3.0.CO;2–4

    Article  CAS  PubMed  Google Scholar 

  23. Walker MD, Rumpf S, Baxter GD, Hirst DG, Lowe AS (2000) Effect of low-intensity laser irradiation (660 nm) on a radiation-impaired wound-healing model in murine skin. Lasers Surg Med 26:41–47. doi:10.1002/(SICI)1096–9101(2000)26:1<41::AID-LSM7>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  24. Pessoa ES, Melhado RM, Theodoro LH, Garcia VG (2004) A histologic assessment of the influence of low-intensity laser therapy on wound healing in steroid-treated animals. Photomed Laser Surg 22:199–204. doi:10.1089/1549541041438533

    Article  PubMed  Google Scholar 

  25. Reddy GK (2003) Comparison of the photostimulatory effects of visible He-Ne and infrared Ga-As lasers on healing impaired diabetic rat wounds. Lasers Surg Med 33:344–351. doi:10.1002/lsm.10227

    Article  PubMed  Google Scholar 

  26. Golub LM, Schneir M, Ramamurthy NS (1978) Enhanced collagenase activity in diabetic rat gingiva: in vitro and in vivo evidence. J Dent Res 57:520–525

    CAS  PubMed  Google Scholar 

  27. Leme JG (1981) Regulatory mechanisms in inflammation: new aspects of autopharmacology. Gen Pharmacol 12:15–24. doi:10.1016/0306–3623(81)90022–7

    CAS  PubMed  Google Scholar 

  28. Klebanov GI, Shuraeva NY, Chichuk TV, Osipov AN, Vladimirov YA (2006) Comparison of the effects of laser and light-emitting diodes on lipid peroxidation in rat wound exudate. Biofizika 51:332–339

    CAS  PubMed  Google Scholar 

  29. Klebanov GI, Shuraeva NY, Chichuk TV, Osipov AN, Vladimirov YA (2006) A comparison of the effects of laser and light-emitting diodes on superoxide dismutase activity and nitric oxide production in rat wound fluid. Biofizika 51:116–122

    CAS  PubMed  Google Scholar 

  30. Lim W, Lee S, Kim I, Chung M, Kim M, Lim H, Park J, Kim O, Choi H (2007) The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39:614–621. doi:10.1002/lsm.20533

    Article  PubMed  Google Scholar 

  31. DeLand MM, Weiss RA, McDaniel DH, Geronemus RG (2007) Treatment of radiation-induced dermatitis with light-emitting diode (LED) photomodulation. Lasers Surg Med 39:164–168. doi:10.1002/lsm.20455

    Article  PubMed  Google Scholar 

  32. Weiss RA, McDaniel DH, Geronemus RG, Weiss MA, Beasley KL, Munavalli GM, Bellew SG (2005) Clinical experience with light-emitting diode (LED) photomodulation. Dermatol Surg 31:1199–1205

    Article  CAS  PubMed  Google Scholar 

  33. Biondo-Simoes Mde L, Ioshii SO, Borsato KS, Zimmermann E (2005) The healing process influenced by hypothyroidism and by elderly. Study of abdominal wall healing in rats. Acta Cir Bras 20 (Suppl 1):211–219

    PubMed  Google Scholar 

  34. Barkovskii VS (1983) Effect of laser radiation on the process of tissue vascularization after damage. Arkh Patol 45:72–76

    CAS  PubMed  Google Scholar 

  35. Del’tsova EI, Neiman AM, Shiian AO (1983) Effect of helium-neon laser rays on the vascular and nerve tissue structures of the small intestine in the cat. Nauchnye Doki Vyss Shkoly Biol Nauki (12):47–50

Download references

Acknowledgments

This work was partially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), through grant number 2001/12754-2. The authors would like to thank Celso Erasmo, Laércio Erasmo and Turíbio Carlos Barbosa for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Antônio Dall Agnol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dall Agnol, M.A., Nicolau, R.A., de Lima, C.J. et al. Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 24, 909–916 (2009). https://doi.org/10.1007/s10103-009-0648-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-009-0648-5

Keywords

Navigation